Marcadores moleculares y genes asociados a calidad de carne en el ganado bovino

Molecular markers and genes associated with meat quality in cattle

Contenido principal del artículo

Camilo A Camargo Pitalua
Universidad de Sucre, Colombia
Donicer E Montes-Vergara
Universidad de Sucre, Colombia
Alexander Pérez-Cordero
Universidad de Sucre, Colombia

Resumen

La carne bovina es una fuente de proteína, la cual posee propiedades fisicoquímicas como la terneza, jugosidad, marmóreo, sabor y retención de agua, que influyen sobre la calidad de la misma. En la actualidad, con ayuda técnicas moleculares como la reacción en cadena de la polimerasa, electroforesis y secuenciación, donde se pueden analizar y detectar marcadores moleculares, se ha descubierto en varias razas bovinas que cambios de algún nucleótido en genes como la calpaína y la calpastatina principalmente, pueden afectar las propiedades antes mencionadas generando una carne mucho mas llamativa para el consumidor, por esta razón el uso de marcadores moleculares como una herramienta de selección cada día toma mas fuerzas, debido a que se puede obtener la información de que caracteristicas tendrá la carne de un individuo y de la descendencia, con el simple hecho de analizar una muestra biológica que contenga su ADN, en la presente revisión se describen algunos genes que tienen efecto sobre las propiedades de la carne y se mencionan polimorfismos de nucleótidos que pueden afectarlas, enfatizando en el gen calpaína y calpastatina, y su influencia en las distintas caracteristicas.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Soria LA & Corva PM. Factores genéticos y ambientales que determinan la terneza de la carne bovina Genetic and environmental factors influencing beef tenderness. Arch. Latinoam. Prod. Anim. 2004; 12(2). https://ojs.alpa.uy/index.php/ojs_files/article/view/20

Mateescu,RG. Genetics of meat quality. In: The genetics of cattle. DJ Garrick and A. Ruvinsky (2 Ed.). CABI Publishing. New York. 2014. https://doi.org/10.1079/9781780642215.0544

Kappes SM. Utilization of gene mapping information in livestock animals. Theriogenology, 1999; 51:135. https://doi.org/10.1016/s0093-691x(98)00237-4

Doelle W, Rokem S, Berovic M. In: Methods in biotechnology, Vol. 2, Ed. Horst (Ed.). Horst W. Doelle, Stefan Rokem, Marin Berovic 2009. https://www.eolss.net/ebooklib/bookinfo/biotechnology.aspx

FAO. La situación de los recursos zoogeneticos mundiales para la alimentación y la agricultura, 2010. https://www.fao.org/documents/card/en/c/1b5aaa26-cf58-44a9-83f7-8998d117fb70

Moreno N, Carabaño MJ, Venturini G, Rueda J, González C, Serrano M, et al,. Combinación de información de expresión diferencial y genotipado de genoma completo para redefinir regiones qtls asociados a caracteres de calidad de carne en bovino. Revista Complutense de Ciencias Veterinarias, 2012; 6(1):50-54. https://link.gale.com/apps/doc/A310150453/IFME?u=anon~cb55f2c2&sid=googleScholar&xid=fdcbfc7e

Falomir Lockhart AH. El color de la carne bovina: Estudio de la influencia y asociación de polimorfismos en genes candidatos. 2020. https://notablesdelaciencia.conicet.gov.ar/handle/11336/144733

Dekkers JCM. Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci. 2004; 82:E313-328. https://doi.org/10.2527/2004.8213_supple313x

Weller J. Current and Future Developments in Patents for Quantitative Trait Loci in Dairy Cattle. Recent Pat. DNA Gene Seq. 2007; 1:69–76. https://doi.org/10.2174/187221507779814489

Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev. 2003; 83(3):731-801. https://doi.org/10.1152/physrev.00029.2002

Desgarennes-Alcalá CM, Moral Sd, Meza-Villalvazo VM, Peña-Castro JM, Zárate-Martínez JP, Abad-Zavaleta J. Estimación de las frecuencias alélicas y genotípicas de los genes CAPN1 Y CAST asociados a la calidad de la carne en bovinos de la Cuenca del Papaloapan. Nova Scientia 2017 ;9(19):211-228. https://doi.org/10.21640/ns.v9i19.996

Van den Maagdenberg K, Claeys E, Stinckens A, Buys N, De Smet S. Effect of age, muscle type, and insulin-like growth factor-II genotype on muscle proteolytic and lipolytic enzyme activities in boars1. J Anim Sci. 2007; 85(4):952-960. http://dx.doi.org/10.2527/jas.20063

Moyen C, Goudenege S, Poussard S, Sassi AH, Brustis JJ, Cottin P. Involvement of micro-calpain (CAPN 1) in muscle cell differentiation. Int. J Biochem Cell Biol. 2004; 36(4):728-743. https://doi.org/10.1016/s1357-2725(03)00265-6

Barnoy S, M Maki, NS Kosower. Overexpression of calpastatin inhibits L8 myoblast fusion. Biochem Biophys Res, 2005; 332(3):697-701. https://doi.org/10.1016/j.bbrc.2005.05.010

Rodriguez SL, Southey BR, Heyen DW, Lewin HA. Interval and composite interval mapping of somatic cell score, yield, and components of milk in dairy cattle. J Dairy Sci 2002; 85(11):3081–3091. https://doi.org/10.3168/jds.s0022-0302(02)74395-6

Page BT, Casas E, Heaton MP, Cullen NG, Hyndman DL, Morris CA, et al. Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J Anim Sci. 2002; 80(12):3077–3085. https://doi.org/10.2527/2002.80123077x

Raynaud P, Gillard M, Parr T, Bardsley R, Amarger V, Levéziel H. Correlation between bovine calpastatin mRNA transcripts and protein isoforms. Arch Biochem Biophys. 2005; 440(1):46–53. https://doi.org/10.1016/j.abb.2005.05.028

Barendse W. Assessing lipid metabolism. Int. Pat. Appl. PCT/ AU98/00882, Int Pat Publ WO 1999; 99/23248. https://patents.google.com/patent/US6383751

Thaller G, C Kuhn, A Winter, G Ewald, O Bellmann, J Wegner, H Zuhlke, R Fries. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim Genet. 2003; 34:354-357. https://doi.org/10.1046/j.1365-2052.2003.01011.x

Casas E, SN White, SD Shackelford, TL Wheeler, M Koohmaraie, GL Bennett, TP Smith. Assessing the association of single nucleotide polymorphisms at the thyroglobulin gene with carcass traits in beef cattle. J Anim Sci. 2007; 85:2807-2814. https://doi.org/10.2527/jas.2007-0179

Schenkel FS, Miller SP, Ye X, Moore SS, Nkrumah JD, Li C, Yu J, Mandell IB, Wilton JW, Williams JL. Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. J Anim Sci. 2005; 83(9):2009-20. https://doi.org/10.2527/2005.8392009x

Máčajová M, Lamošová D, Zeman M. Role of leptin in farm animals: a review. Journal of Veterinary Medicine Series A. 2004; 51(4):157-166. https://doi.org/10.1111/j.1439-0442.2004.00619.x

Fernandes JS, Crispim BA, Seno LO, Aspilcueta RR, Barufatti A. Polymorphisms related to bovine leptin gene and association with productive and reproductive traits in Nellore heifers. Tropical Animal Science Journal. 2020; 43(1):18-24. https://doi.org/10.5398/tasj.2020.43.1.18

Santos-Alvarez J, Goberna R, Sánchez-Margalet V. Human leptin stimulates proliferation and activation of human circulating monocytes. Cell Immunol. 1999; 194(1):6-11. https://doi.org/10.1006/cimm.1999.1490

Kadokawa H, Blache D, Yamada Y, Martin GB. Relationships between changes in plasma concentrations of leptin before and after parturition and the timing of first post-partum ovulation in high-producing Holstein dairy cows. Reprod Fertil Dev. 2000; 12(7-8):405-411. https://doi.org/10.1071/rd01001

Block SS, Butler WR, Ehrhardt RA, Bell AW, Van Amburgh ME, Boisclair YR. Decreased concentration of plasma leptin in periparturient dairy cows is caused by negative energy balance. J Endocrinol. 2001; 171(2):339-348. https://doi.org/10.1677/joe.0.1710339

Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, Winkelman-Sim DC, Schmutz SM. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet Sel Evol. 2002; 34(1):105-116. https://doi.org/10.1186/1297-9686-34-1-105

Kononoff PJ, Deobald HM, Stewart EL, Laycock AD, Marquess FL. The effect of a leptin single nucleotide polymorphism on quality grade, yield grade, and carcass weight of beef cattle. J Anim Sci. 2005; 83(4):927-932. https://doi.org/10.2527/2005.834927x

Kaikaus RM, Bass NM, Ockner RK. Functions of fatty acid binding proteins. Experientia. 1990; 46(6):617-630. https://doi.org/10.1007/bf01939701

Michal JJ, Zhang ZW, Gaskins CT, Jiang Z. The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses. Anim Genet. 2006; 37(4):400-402. https://doi.org/10.1111/j.1365-2052.2006.01464.x

Li X, Ekerljung M, Lundström K, Lundén A. Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Sci. 2013; 94(2):153-158. https://doi.org/10.1016/j.meatsci.2013.01.010

Chriki S, Renand G, Picard B, Micol D, Journaux L, Hocquette J. Meta-analysis of the relationships between beef tenderness and muscle characteristics. Livest Sci 2013; 155:424-434. https://doi.org/10.1016/j.livsci.2013.04.009

Ba HV, Reddy BV, Hwang I. Role of calpastatin in the regulation of mRNA expression of calpain, caspase, and heat shock protein systems in bovine muscle satellite cells. In Vitro Cell Dev Biol Anim. 2015; 51(5):447-454. https://doi.org/10.1007/s11626-014-9849-8

Sava çi M, Atasoy F. The investigation of calpastatin and thyroglobulin gene polymorphisms in some native cattle breeds. Ankara Üniv Vet Fak Derg. 2016; 63:53-59. http://dx.doi.org/10.1501/Vetfak_0000002709

Gagaoua M, Picard B, Soulat J, Monteils V. Clustering of sensory eating qualities of beef: Consistencies and differences within carcass, muscle, animal characteristics and rearing factors. Livest Sci. 2018; 214:245–258. https://doi.org/10.1016/j.livsci.2018.06.011

Renerre M, Anton M, Gatellier P. Autoxidation of purified myoglobin from two bovine muscles. Meat Sci. 1992; 32(3):331–342. https://doi.org/10.1016/0309-1740(92)90096-M

Pinto LFB, Ferraz JBS, Meirelles FV, Eler JP, Rezende FM, Carvalho ME, et al. Association of SNPs on CAPN 1 and CAST genes with tenderness in Nellore cattle. Genet Mol Res. 2010; 9(3):1431–1442. https://doi.org/10.4238/vol9-3gmr881

Smith T, Thomas MG, Bidner TD, Paschal JC, Franke DE. Single nucleotide polymorphisms in Brahman steers and their association with carcass and tenderness traits. Genet Mol Res. 2009; 8(1):39–46. https://doi.org/10.4238/vol8-1gmr537

Shin SC, Chung ER. Association of SNP marker in the thyroglobulin gene with carcass and meat quality traits in Korean cattle. Asian Aaustral J Anim. 2006; 20(2):172–177. https://doi.org/10.5713/ajas.2007.172

Carvalho ME, Eler JP, Bonin MN, Rezende FM, Biase FH, Meirelles FV, Regitano LC, Coutinho LL, Balieiro JC, Ferraz JB. Genotypic and allelic frequencies of gene polymorphisms associated with meat tenderness in Nellore beef cattle. Genet Mol Res. 2017; 16(1). https://doi.org/10.4238/gmr16018957

Curi RA, Chardulo LAL, Mason MC, Arrigoni MDB, Silveira AC, De Oliveira HN. Effect of single nucleotide polymorphisms of CAPN1 and CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim Genet. 2009; 40:456–462. https://doi.org/10.1111/j.1365-2052.2009.01859.x

Gill JL, Bishop SC, McCorquodale C, Williams JL, Wiener P. Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle. Genet Sel Evo. 2009; 41:36. https://doi.org/10.1186/1297-9686-41-36

Saucedo Uriarte JA, Cayo Colca IS, Diaz Quevedo C, López Lapa RM. Asociación de polimorfismos en los genes CAPN y CAST con propie-dades fisicoquímicas de la carne bovina: una revisión. CES Med Zootec. 2021; 16(1):8-28. https://doi.org/10.21615/cesmvz.16.1.1

Hocquette JF, Gondret F, Baéza E, Médale F, Jurie C, Pethick DW. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal. 2010; 4(2):303–319. https://doi.org/10.1017/s1751731109991091

Dear TN, Meier NT, Hunn M, Boehm T. Gene structure, chromosomal localization, and expression pattern of Capn12, a new member of the calpain large subunit gene family. Genomics 2000; 68:152–160. https://doi.org/10.1006/geno.2000.6289

Pratiwi N, Maskur M, Priyanto R, Jakaria J. Novel SNP of calpain-1 (CAPN1) gene and its association with carcass and meat characteristics traits in Bali cattle. J Indones Trop Anim Agric. 2016; 41(3):109–116. https://doi.org/10.14710/jitaa.41.3.109-116

Hou G, Huang M, Gao X, Li J, Gao H, Ren H, et al. Association of Calpain 1 (CAPN1) and HRSP12 allelic variants in beef cattle with carcass traits. Afr J Biotechnol 2011; 10(63):13714–13718. http://dx.doi.org/10.5897/AJB11.338

Lagonigro R, Wiener P, Pilla F, Woolliams JA, Williams JL. A new mutation in the coding region of the bovine leptin gene associated with feed intake. Animal Genetics. 2003; 34(5):371-374. https://doi.org/10.1046/j.1365-2052.2003.01028.x

Park SJ, Beak SH, Da Jin Sol Jung SY, Kim IHJ, Piao MY, Kang HJ, et al. Genetic, management and nutritional factors affecting intramuscular fat deposition in beef cattle—a review. Asian Austral J Anim. 2018; 31(7):1043–1061. https://doi.org/10.5713/ajas.18.0310

Lee B, Yoon S, Lee Y, Oh E, Yun YK, Do Kim B, et al. Comparison of marbling fleck characteristics and objective tenderness parameters with different marbling coarseness within longissimus thoracis muscle of high-marbled Hanwoo steer. Korean J Food Sci An. 2018; 38(3):606–614. https://doi.org/10.5851%2Fkosfa.2018.38.3.606

Beak SH, Park SJ, Fassah DM, Kim HJ, Kim M, Jo C, et al. Relationships among carcass traits, auction price, and image analysis traits of marbling characteristics in Korean cattle beef. Meat Sci. 2021; 171:108268. https://doi.org/10.1016/j.meatsci.2020.108268

Wheeler TL, Cundiff LV, Koch RM. Effect of marbling degree on beef palatability in Bos taurus and Bos indicus cattle. J Anim Sci. 1994; 72(12):3145–3151. https://doi.org/10.2527/1994.72123145x

Casas E, White SN, Wheeler TL, Shackelford SD, Koohmaraie M, Riley DG, et al. Effects of calpastatin and μ-calpain markers in beef cattle on tenderness traits. J Anim Sci. 2006; 84(3):520–525. https://doi.org/10.2527/2006.843520x

Bertram H, Andersen H, Karlsson A, Horn P, Hedegaard J, Nørgaard L, Engelsen S. Prediction of technological quality (cooking loss and Napole yield) of pork based on fresh meat characteristics. Meat Science. 2003; 65:707-712. https://doi.org/10.1016/s0309-1740(02)00272-3

Aaslyng, M. Trends in meat and consumption and the need for fresh meat and meat products of improved quality. En J. Kerry y D. Ledward (Eds), Improving the sensory and nutritional quality of fresh mead. Woodhead Publishing Lta; 2009. http://dx.doi.org/10.1533/9781845695439.1.3

Pearce KL, Rosenvold K, Andersen HJ, Hopkins DL. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes – A review. Meat Science. 2011; 89(2):111- 124. https://doi.org/10.1016/j.meatsci.2011.04.007

Leal-Gutiérrez JD, Jiménez-Robayo LM, Ariza M, Manrique C, López J, Martínez C, et al. Polimorfismos de los genes CAPN1, CAST, DES, PRKAG3 y RYR1 asociados a la capacidad de retención de agua en crudo y cocinado en carne de bovino en cruces Bos indicus y Bos taurus en Colombia Archivos de Zootecnia. 2015; 64(245):29-35. https://doi.org/10.21071/az.v64i245.371

Reardon W, Mullen A, Sweeney T, Hamill R. Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine M. longissimus and M. semimembranosus. Meat Science. 2010; 86:270-275. https://doi.org/10.1016/j.meatsci.2010.04.013

Song S, Zhang X, Hayat K, Liu P, Jia C, Xia S, et al. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow. Food Chem. 2011; 124(1):203–209. http://dx.doi.org/10.1016/j.foodchem.2010.06.010

Citado por

Artículos más leídos del mismo autor/a

1 2 > >> 

Artículos similares

También puede {advancedSearchLink} para este artículo.