Presence of mercury-resistant rhizosphere bacteria in soils in the Southern Bolívar, Colombia

Presencia de bacterias rizosféricas resistentes a mercurio en suelos del sur de Bolívar, Colombia

Main Article Content

Ramón Paternina H
Corporación Autónoma Regional de Sucre- CARSUCRE, fortalecimiento del programa y monitoreo del recurso hídrico, Sincelejo, Colombia.
Alexander Pérez C
Universidad de Sucre, Facultad de Ciencias Agropecuarias, departamento de Fitotecnia, Grupo de investigación en Bioprospección Agropecuaria, Sincelejo, Colombia.
Deimer Vitola R
Universidad de Sucre, grupo de investigación Bioprospección Agropecuaria, Sincelejo, Colombia.

Abstract

The objective of the present study was to isolate rhizospheric bacteria from samples from the Santa Cruz Mine, department of Bolívar, in order to evaluate in vitro resistance activity at different concentrations of mercury. The samples were collected randomly from different sites near the Santa Cruz gold mine, from which they isolated rhizospheric bacteria. The resistance capacity of bacteria at different concentrations of mercury in the form of mercury chloride (HgCl2) at concentrations of 50 ppm, 100 ppm, 150 ppm, 200 ppm and 250 ppm was evaluated in vitro; also the bacteria resistant to this metal were used to evaluate the ability to promote growth in plants. The results showed that the bacterium identified as Pseudomonas luteola, resisted in vitro at 200 ppm of mercury chloride (HgCl2), and qualitatively had the ability to produce siderophores and biologically fix nitrogen. P luteola was isolated from the rhizosphere near the Santa Cruz mine in the department of Bolívar, Colombia, with soils with high concentrations of mercury and extremely acidic soil reaction.

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
0%
33%
Days to publication 
5
145

Indexed in

Editor & editorial board
profiles
Academic society 
Universidad de Sucre
Publisher 
Universidad de Sucre

Article Details

References / See

ADRIANO, D.C. 2001. Trace elements in the terrestrial environment. Springer, New York. DOI: https://doi.org/10.1007/978-0-387-21510-5

BASHAN, Y.; DE-BASHAN, L. E. 2005. Bacteria/plant growthpromotion. In: D. Hillel (ed.). Encyclopedia of soils in the environment. Elsevier. Oxford. UK. DOI: https://doi.org/10.1016/B0-12-348530-4/00513-0

BLOOM, NS.; PORCELLA, DB. 1994. Less mercury?. Nature 367, 694 DOI: https://doi.org/10.1038/367694a0

BRAUD, A.; HANNAUER, M.; MILSIN, G.L.A.; SCHALK, I.J. 2009a.The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. Journal of Bacteriology. 191:5317–5325. DOI: https://doi.org/10.1128/JB.00010-09

BRAUD, A.; HOEGY, F.; JEZEQUEL, K.; LEBEAU, T.; SCHALK, I.J. 2009b. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environmental Microbioogy. 11:1079–1091. DOI: https://doi.org/10.1111/j.1462-2920.2008.01838.x

CASIERRA-POSADA, F.; AGUILAR-AVENDAÑO, O. 2007. Estrés por aluminio en plantas: reacciones en el suelo, síntomas en vegetales y posibilidades de corrección. Rev. Col. Ciencias Hort. 1(2):246-257. DOI: https://doi.org/10.17584/rcch.2007v1i2.8701

CASALTA, J.P.; FOURNIER, P.E.; HABIB, G.; RIBERI, A.; RAOULT, D. 2005.Válvula protésica endocarditis causada por Pseudomonas luteola. BMC Infectious Diseases. 2005; 5: 82-82. Disponible en: URL: http://viaclinica.com/article.php?pmc_id=1274313 DOI: https://doi.org/10.1186/1471-2334-5-82

CHUNG, S.; CHON, HT. 2014. Assessment of the level of mercury contamination from some anthropogenic sources in Ulaanbaatar, Mongolia. J. Geochem. Explor. 147: 237–244. DOI: https://doi.org/10.1016/j.gexplo.2014.07.016

DE SOUZA, MJ.; NAIR, S.; LOKA BHARATHI, PA.; CHANDRAMOHAN, D., 2006. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology 15: 379–384. DOI: https://doi.org/10.1007/s10646-006-0068-2

DOBBELAERE, S.; VANDERLEYDEN, J.; OKON, Y. 2003. Plant Growth-Promoting Effects of Diazotrophs in the Rhizosphere. Critical Reviews in Plant Sciences. 22(2):107-149. DOI: https://doi.org/10.1080/713610853

GERHARDT, KE.; HUANG, XD.; GLICK, BR.; GREENBERG, BM. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176: 20-30. DOI: https://doi.org/10.1016/j.plantsci.2008.09.014

GONZÁLEZ, A .M.; ESPINOSA, V. D.; GÓMEZ, M. F. 2015. EFFICIENCY OF PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR) IN SUGARCANE. Revista Terra Latinoamericana. 33: 321-330.

HIDER, R.C.; KONG, X. 2010. Chemistry and biology of siderophores. Natural Product Reports. 27:637–657. DOI: https://doi.org/10.1039/b906679a

INSTITUTO GEOGRÁFICO AGUSTÍN CODAZZI –IGAC-. 2015. ¿Cómo realizar la toma de muestras para suelos? Disponible desde internet en: http://www.igac.gov. co/wps/portal/igac/raiz/iniciohome/tramites/!ut/p/c4/04_SB8K8xLLM9MSSzPy8xBz9CP0os3hHT3d_JydDRwN3t0BXA0_vUKMwf28PI4NQI_2CbEdFAJ67NCc!/?WCM_PORTLET=PC_7_AIGOBB1A08AGF0ISG6J8NS30 (con acceso26/10/2016).

KABATA-PENDIAS, A. 2011. Trace elements in soils and plants. 4th ed. CRC Press, Boca Ratón (Estados Unidos). DOI: https://doi.org/10.1201/b10158

KREWULAK, K.D.; VOGEL, H.J. 2007. Structural biology of bacterial iron uptake. Biochimica et Biophysica Acta. 1778:1781–1804. DOI: https://doi.org/10.1016/j.bbamem.2007.07.026

NASCIMENTO, A.M.A.; CHARTONE-SOUZA, E. 2003. Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Gen. Mol. Res. 2: 92–101.

MATHEMA, VB.; THAKURI, BC.; SILLANPÄÄ, M. 2011. Bacterialmer operon-mediated detoxification f mercurial compounds: a short review. Arch Microbiol 193: 837–844. DOI: https://doi.org/10.1007/s00203-011-0751-4

MURATOVA, A.; HΫBNER, TH.; TISCHER, S.; TURKOVSKAYA, O.; MÖDER, M.; KUSCHK, P. 2003. Plant-Rhizosphere - Microflora association during phytoremediation of PAH -contaminated soil. Int. J. Phytoremediat. 5:137-151. DOI: https://doi.org/10.1080/713610176

OZDEMIR, G.; BAYSAL, S. H. 2004. “Chromium and aluminum biosorption on Chryseomonas luteola TEM05”. Applied Microbiology and Biotechnology. 64 (4): 599–603. DOI: https://doi.org/10.1007/s00253-003-1479-0

OZDEMIR, G.; CEYHAN, N.; MANAV, E. 2005. “Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions”. Bioresource Technology. 96 (15): 1677–82 DOI: https://doi.org/10.1016/j.biortech.2004.12.031

PAISIO, C.E.; GONZÁLEZ, P.S.; TALANO, M.A.; AGOSTINI, E. 2012. Remediación biológica de Mercurio: Recientes avances. Rev Latinoam Biotecnol Amb Algal 3(2):119-146.

PÉREZ, AC.; TUBERQUÍA, SA.; AMELL, JD. 2014. Actividad in vitro de bacterias endófitas fijadoras de nitrógeno y solubilizadoras de fosfatos. Agron. Mesoam. 25:01-11.

PÉREZ, A.; MARTINEZ, D.; ZAFIRO, B.; MARRUGO, J. 2016. Bacterias endófitas asociadas a los géneros Cyperus y Paspalum en suelos contaminados con mercurio. Rev. U.D.C.A Act. & Div. Cient. 19(1): 67-76. DOI: https://doi.org/10.31910/rudca.v19.n1.2016.111

PÉREZ C. A.; ARROYO C. E.; CHAMORRO A. L. 2017. Bacterias endófitas aisladas de cultivo de arroz. Editorial Académica Española, España.

POSCHENRIEDER, C.; BARCELÓ, J. 2003. Estrés por metales pesados. In: REIGOSa, MJ., PEDROL, N., SÁNCHEZ, A. (eds.). Ecofisiología Vegetal. Madrid.

UNEP, 2013. Global Mercury Assessment 2013: Source, Emissions, Releases and Environmental Transport.

RATHNAYAKE, IVN.; MALLAVARAPU, M.; KRISHNAMURTI, GSR.; BOLAN, NS.; NAIDUR R. 2013. Heavy metal toxicity to bacteria – Are the existing growth media accurate enough to determine heavy metal toxicity. Chemosphere. 90:1195-1200. DOI: https://doi.org/10.1016/j.chemosphere.2012.09.036

RASMUSSEN, LD.; ZAWADSKY, C.; BINNERUP, SJ.; OREGAARD, G.; SORENSEN, SJ.; KROER, N., 2008. Cultivation of hard to culture subsurface mercury resistant bacteria and discovery of new mera gene sequences. Appl. Environ. Microbiol. 74 (12): 3795–3803. DOI: https://doi.org/10.1128/AEM.00049-08

SANTANA, M.; VÁSQUEZ, C.; MARTÍNEZ, M.; FRANCO, M. 2002. Evaluación de cepas de Azotobacter spp y de bacterias solubilizadoras de fosfato (BFS), como bifertilizante mixto en cultivos de crisantemo (Chrysoanthemum morifolium var. Regal Suerte). Tesis de Microbiologia Industrial. Pontificia Universidad Javeriana. 24 p.

SABRY, SA.; GHOZLAN, HA.; ABOU-ZEID, DM. 1997. Metal tolerance and antibiotic resistance patterns of a bacterial population isolated from sea water. Journal Applied and Microbiology. 82, 245–252. DOI: https://doi.org/10.1111/j.1365-2672.1997.tb03580.x

SCHWYN, B.; NEILANDS, J. (1987). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160: 47-56. DOI: https://doi.org/10.1016/0003-2697(87)90612-9

WANG, J.; FENG, X.; ANDERSON, C.W.; XING, Y.; SHANG, L. 2012. Remediation of mercury contaminated sites - A review. J Hazard Mater 221-222:1-18. DOI: https://doi.org/10.1016/j.jhazmat.2012.04.035

WINKELMANN, G.; VAN DER HELM, D.; Neilands, J. B. 1987. Iron Transport in Microbes, Plants and Animals, VCH Press, Weinheim.

WINKELMANN, G. 1991. Handbook of Microbial Iron Chelates, CRC Press, Boca Raton, FL, 1991.

YANG, J.; KLOEPPER J. W.; RYU, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14: 1-4. DOI: https://doi.org/10.1016/j.tplants.2008.10.004

YASUTAKE, A.; CHENG, JP.; KIYONO, M.; URAGICHI, S.; LIU, X.; MUIRA, K.; Yasuda, Y.; MASHYANOV, N. 2011. Rapid monitoring of mercury in air from an organic chemical factory in China using a portable mercury analyzer. The Scientific World JOURNAL 11:1630–1640. DOI: https://doi.org/10.1100/2011/493207

ZHANG, HH.; CHEN, JJ.; ZHU, L.; YANG, GY., LI, D.Q., 2014. Anthropogenic mercury enrichment factors and contributions in soils of Guangdong Province, South China.J. Geochem. Explor. 144:312–319. DOI: https://doi.org/10.1016/j.gexplo.2014.01.031

ZHOU, J.; WANG, Z.; ZHANG, X.; CHEN, J., 2015. Distribution and elevated soil pools ofmercury in an acidic subtropical forest of southwestern China. Environ. Pollut. 202, 187–195. DOI: https://doi.org/10.1016/j.envpol.2015.03.021

Citado por

Citations

Crossref
Scopus
Europe PMC

Most read articles by the same author(s)

1 2 > >>