ADRIANO, D.C. 2001. Trace elements in the terrestrial environment. Springer, New York.
DOI: https://doi.org/10.1007/978-0-387-21510-5
BASHAN, Y.; DE-BASHAN, L. E. 2005. Bacteria/plant growthpromotion. In: D. Hillel (ed.). Encyclopedia of soils in the environment. Elsevier. Oxford. UK.
DOI: https://doi.org/10.1016/B0-12-348530-4/00513-0
BLOOM, NS.; PORCELLA, DB. 1994. Less mercury?. Nature 367, 694
DOI: https://doi.org/10.1038/367694a0
BRAUD, A.; HANNAUER, M.; MILSIN, G.L.A.; SCHALK, I.J. 2009a.The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. Journal of Bacteriology. 191:5317–5325.
DOI: https://doi.org/10.1128/JB.00010-09
BRAUD, A.; HOEGY, F.; JEZEQUEL, K.; LEBEAU, T.; SCHALK, I.J. 2009b. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environmental Microbioogy. 11:1079–1091.
DOI: https://doi.org/10.1111/j.1462-2920.2008.01838.x
CASIERRA-POSADA, F.; AGUILAR-AVENDAÑO, O. 2007. Estrés por aluminio en plantas: reacciones en el suelo, síntomas en vegetales y posibilidades de corrección. Rev. Col. Ciencias Hort. 1(2):246-257.
DOI: https://doi.org/10.17584/rcch.2007v1i2.8701
CASALTA, J.P.; FOURNIER, P.E.; HABIB, G.; RIBERI, A.; RAOULT, D. 2005.Válvula protésica endocarditis causada por Pseudomonas luteola. BMC Infectious Diseases. 2005; 5: 82-82. Disponible en: URL: http://viaclinica.com/article.php?pmc_id=1274313
DOI: https://doi.org/10.1186/1471-2334-5-82
CHUNG, S.; CHON, HT. 2014. Assessment of the level of mercury contamination from some anthropogenic sources in Ulaanbaatar, Mongolia. J. Geochem. Explor. 147: 237–244.
DOI: https://doi.org/10.1016/j.gexplo.2014.07.016
DE SOUZA, MJ.; NAIR, S.; LOKA BHARATHI, PA.; CHANDRAMOHAN, D., 2006. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology 15: 379–384.
DOI: https://doi.org/10.1007/s10646-006-0068-2
DOBBELAERE, S.; VANDERLEYDEN, J.; OKON, Y. 2003. Plant Growth-Promoting Effects of Diazotrophs in the Rhizosphere. Critical Reviews in Plant Sciences. 22(2):107-149.
DOI: https://doi.org/10.1080/713610853
GERHARDT, KE.; HUANG, XD.; GLICK, BR.; GREENBERG, BM. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176: 20-30.
DOI: https://doi.org/10.1016/j.plantsci.2008.09.014
GONZÁLEZ, A .M.; ESPINOSA, V. D.; GÓMEZ, M. F. 2015. EFFICIENCY OF PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR) IN SUGARCANE. Revista Terra Latinoamericana. 33: 321-330.
HIDER, R.C.; KONG, X. 2010. Chemistry and biology of siderophores. Natural Product Reports. 27:637–657.
DOI: https://doi.org/10.1039/b906679a
INSTITUTO GEOGRÁFICO AGUSTÍN CODAZZI –IGAC-. 2015. ¿Cómo realizar la toma de muestras para suelos? Disponible desde internet en: http://www.igac.gov. co/wps/portal/igac/raiz/iniciohome/tramites/!ut/p/c4/04_SB8K8xLLM9MSSzPy8xBz9CP0os3hHT3d_JydDRwN3t0BXA0_vUKMwf28PI4NQI_2CbEdFAJ67NCc!/?WCM_PORTLET=PC_7_AIGOBB1A08AGF0ISG6J8NS30 (con acceso26/10/2016).
KABATA-PENDIAS, A. 2011. Trace elements in soils and plants. 4th ed. CRC Press, Boca Ratón (Estados Unidos).
DOI: https://doi.org/10.1201/b10158
KREWULAK, K.D.; VOGEL, H.J. 2007. Structural biology of bacterial iron uptake. Biochimica et Biophysica Acta. 1778:1781–1804.
DOI: https://doi.org/10.1016/j.bbamem.2007.07.026
NASCIMENTO, A.M.A.; CHARTONE-SOUZA, E. 2003. Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Gen. Mol. Res. 2: 92–101.
MATHEMA, VB.; THAKURI, BC.; SILLANPÄÄ, M. 2011. Bacterialmer operon-mediated detoxification f mercurial compounds: a short review. Arch Microbiol 193: 837–844.
DOI: https://doi.org/10.1007/s00203-011-0751-4
MURATOVA, A.; HΫBNER, TH.; TISCHER, S.; TURKOVSKAYA, O.; MÖDER, M.; KUSCHK, P. 2003. Plant-Rhizosphere - Microflora association during phytoremediation of PAH -contaminated soil. Int. J. Phytoremediat. 5:137-151.
DOI: https://doi.org/10.1080/713610176
OZDEMIR, G.; BAYSAL, S. H. 2004. “Chromium and aluminum biosorption on Chryseomonas luteola TEM05”. Applied Microbiology and Biotechnology. 64 (4): 599–603.
DOI: https://doi.org/10.1007/s00253-003-1479-0
OZDEMIR, G.; CEYHAN, N.; MANAV, E. 2005. “Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions”. Bioresource Technology. 96 (15): 1677–82
DOI: https://doi.org/10.1016/j.biortech.2004.12.031
PAISIO, C.E.; GONZÁLEZ, P.S.; TALANO, M.A.; AGOSTINI, E. 2012. Remediación biológica de Mercurio: Recientes avances. Rev Latinoam Biotecnol Amb Algal 3(2):119-146.
PÉREZ, AC.; TUBERQUÍA, SA.; AMELL, JD. 2014. Actividad in vitro de bacterias endófitas fijadoras de nitrógeno y solubilizadoras de fosfatos. Agron. Mesoam. 25:01-11.
PÉREZ, A.; MARTINEZ, D.; ZAFIRO, B.; MARRUGO, J. 2016. Bacterias endófitas asociadas a los géneros Cyperus y Paspalum en suelos contaminados con mercurio. Rev. U.D.C.A Act. & Div. Cient. 19(1): 67-76.
DOI: https://doi.org/10.31910/rudca.v19.n1.2016.111
PÉREZ C. A.; ARROYO C. E.; CHAMORRO A. L. 2017. Bacterias endófitas aisladas de cultivo de arroz. Editorial Académica Española, España.
POSCHENRIEDER, C.; BARCELÓ, J. 2003. Estrés por metales pesados. In: REIGOSa, MJ., PEDROL, N., SÁNCHEZ, A. (eds.). Ecofisiología Vegetal. Madrid.
UNEP, 2013. Global Mercury Assessment 2013: Source, Emissions, Releases and Environmental Transport.
RATHNAYAKE, IVN.; MALLAVARAPU, M.; KRISHNAMURTI, GSR.; BOLAN, NS.; NAIDUR R. 2013. Heavy metal toxicity to bacteria – Are the existing growth media accurate enough to determine heavy metal toxicity. Chemosphere. 90:1195-1200.
DOI: https://doi.org/10.1016/j.chemosphere.2012.09.036
RASMUSSEN, LD.; ZAWADSKY, C.; BINNERUP, SJ.; OREGAARD, G.; SORENSEN, SJ.; KROER, N., 2008. Cultivation of hard to culture subsurface mercury resistant bacteria and discovery of new mera gene sequences. Appl. Environ. Microbiol. 74 (12): 3795–3803.
DOI: https://doi.org/10.1128/AEM.00049-08
SANTANA, M.; VÁSQUEZ, C.; MARTÍNEZ, M.; FRANCO, M. 2002. Evaluación de cepas de Azotobacter spp y de bacterias solubilizadoras de fosfato (BFS), como bifertilizante mixto en cultivos de crisantemo (Chrysoanthemum morifolium var. Regal Suerte). Tesis de Microbiologia Industrial. Pontificia Universidad Javeriana. 24 p.
SABRY, SA.; GHOZLAN, HA.; ABOU-ZEID, DM. 1997. Metal tolerance and antibiotic resistance patterns of a bacterial population isolated from sea water. Journal Applied and Microbiology. 82, 245–252.
DOI: https://doi.org/10.1111/j.1365-2672.1997.tb03580.x
SCHWYN, B.; NEILANDS, J. (1987). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160: 47-56.
DOI: https://doi.org/10.1016/0003-2697(87)90612-9
WANG, J.; FENG, X.; ANDERSON, C.W.; XING, Y.; SHANG, L. 2012. Remediation of mercury contaminated sites - A review. J Hazard Mater 221-222:1-18.
DOI: https://doi.org/10.1016/j.jhazmat.2012.04.035
WINKELMANN, G.; VAN DER HELM, D.; Neilands, J. B. 1987. Iron Transport in Microbes, Plants and Animals, VCH Press, Weinheim.
WINKELMANN, G. 1991. Handbook of Microbial Iron Chelates, CRC Press, Boca Raton, FL, 1991.
YANG, J.; KLOEPPER J. W.; RYU, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14: 1-4.
DOI: https://doi.org/10.1016/j.tplants.2008.10.004
YASUTAKE, A.; CHENG, JP.; KIYONO, M.; URAGICHI, S.; LIU, X.; MUIRA, K.; Yasuda, Y.; MASHYANOV, N. 2011. Rapid monitoring of mercury in air from an organic chemical factory in China using a portable mercury analyzer. The Scientific World JOURNAL 11:1630–1640.
DOI: https://doi.org/10.1100/2011/493207
ZHANG, HH.; CHEN, JJ.; ZHU, L.; YANG, GY., LI, D.Q., 2014. Anthropogenic mercury enrichment factors and contributions in soils of Guangdong Province, South China.J. Geochem. Explor. 144:312–319.
DOI: https://doi.org/10.1016/j.gexplo.2014.01.031
ZHOU, J.; WANG, Z.; ZHANG, X.; CHEN, J., 2015. Distribution and elevated soil pools ofmercury in an acidic subtropical forest of southwestern China. Environ. Pollut. 202, 187–195.
DOI: https://doi.org/10.1016/j.envpol.2015.03.021