Bacterias endofitas: un nuevo campo de investigación para el desarrollo del sector agropecuario

Endophytic bacteria: a new field of research for development of agricultural sector

Contenido principal del artículo



Las bacterias endófitas habitan dentro de los tejidos de las plantas al menos durante una parte de su ciclo de vida sin causar daño alguno al hospedero, establecen asociación simbiótica y producen grandes beneficios para las plantas. Las bacterias endófitas cumplen una gran diversidad de funciones como promotoras de crecimiento vegetal, control biológico sobre una diversidad de fitopatógenos, mejoran la eficiencia de los procesos de fitoremediación de compuesto tóxicos en la rizósfera. Estos microorganismo son fuentes inagotable de más de 20.000 compuestos biológicamente activos, los cuales influyen de manera directa en el rendimiento y supervivencia de las plantas hospederas. Las bacterias endófitas son reportadas por producir un número de metabolitos como antibióticos, metabolitos secundarios incluyendo algunos compuestos antitumorales, agentes antiinflamatorios.

Palabras clave:


Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

AHEMAD, M. 2012. Implications of bacterial resistance against heavy metals in bioremediation: a review. IIOABJ 3:39–46.

ALIYE, N.; FININSA, C.; HISKIAS Y. 2008. Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological Control 47:282-288.

ARAÚJO, W.L.; MARCON, J.; MACCHERONI, J.R.W.; VAN, E.; VAN, V.; AZEVEDO, J.L. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology 68: 4906–4914.

ARGUELLES-ARIAS, A.; ONGENA, M.; HALIMI, B.; LARA, Y.; BRANS, A.; JORIS, B.; FICKERS, P. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell

Factories 26: 8–63.

ARREBOLA, E.; JACOBS, R.; KORSTEN, L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology 108 (2): 386– 395.

BAILEY, B.A.; BAE, H.; STREM, M.D.; ANTUNEZ, G.; GUILTINAN, M.J.; VERICA, J.A.; MAXIMOVA, S.N.; BOWERS, J.H. 2005. Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 treatment and a compatible infection by Phytophthora megakarya. Plant Physiol. Biochem. 43: 611–622.

BAZZICALUPO, M.; OKON, Y. 2002. Associative and endophytic symbiosis. Current Plant Science and Biotechnology in Agriculture, Nitrogen Fixation: From Molecules to Crop Productivity. Section VIII. 38:409-410.

BARKA, E.A.; GOGNIES, S.; NOWAK, J.; AUDRAN, J.C.; BELARBI, A. 2002. Inhibitory effect of endophytic bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biological Control 24: 135–142.

BARZANTI, R.; OZINO, F.; BAZZICALUPO, M.; GABBRIELLI, R.; GALARDI, F.; GONNELLI, C.; MENGONI, A. 2007. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microbiology of Ecology 53: 306-316.

BENHAMOU, N.; GAGNÉ, S.; QUÉRÉ, DL.; DEHBI, L. 2000. Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Biochem. Cell Biol 90: 45-56.

BORGES, W.D.S.; BORGES, K.B.; BONATO, P.S.; SAID, S.; PUPO, M.T. (2009). Endophytic fungi: Natural products, enzymes and biotransformation reactions. Current Organic Chemistry 13(12):1137–1163.

CHANWAY, C.P. 1998. Bacterial endophytes: ecological and practical implications. Sydowia 50, 149–170.

CASTILLO, U.F.; STROBEL, G.A.; FORD, E.J.; HESS, W.M.; PORTER, H.; JENSEN, J.B.; et al.,. 2002. Munumbicins, wide spectrum antibiotics produced by Streptomyces (NRRL30562) endophytic on Kennedia nigriscans. Microbiology 148: 2675–2685.

CHAISIT, P.; MICHAEL, J.S.; PRATHUANGWONG, S. 2010. Lipopeptide surfactin produced by Bacillus amyloliquefaciens KPS46 is required for biocontrol efficacy against Xanthomonas axonopodis pv. glycines. Kasetsart Journal (Nature Science) 44 (1): 84–99.

CHEN, X.H.; KOUMOUTSI, A.; SCHOLZ, R.; BORRISS, R. 2009. More than anticipated production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. Journal of Molecular Microbiology and Biotechnology 16:14–24.

COMPANT, S.; CLÉMENT, C.; SESSITSCH, A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology Biochemical 42:669–78.

COMPANT, S.; REITER, B.; SESSITSCH, A.; NOWAK, J.; CLÉMENT, C.; AIT BARKA, E. 2005. Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Applied Environmental Microbiology 71:1685–1693.

DARY, M.; CHAMBER-PÉREZ MA.; PALOMARES, AJ.; PAJUELO, E. 2010. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–30.

DEMAIN AL, SANCHEZ S. 2009. Microbial drug discovery: 80 years of progress. J Antibiot 62:5-16.

ELBELTAGY, A.; NISHIOKA, K.; SATO, T.; SUZUKI, H.; YE, B.; HAMADA, T.; ISAWA, T.; MITSUI, H.; MINAMISAWA, K. 2001. Endophytic colonization and in plant nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol. 67: 5285- 5293.

FRANCOVA, K.; MACKOVÁ, M.; MACEK, T.; SYLVESTRE, M.. 2004. Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to catalyse oxygenation of ortho-hydroxychlorobiphenyls formed from PCBs by plants. Environ. Poll. 127: 41-48.

FISHAL, EM.; MEON, S.; YUN, WM. 2010. Induction of tolerance to Fusarium wilt and defense-related mechanisms in the plantlets of susceptible Berangan Banana preinoculem with Pseudomonas sp. (UPMP3) and Burkholderia sp. (UPMB3). Agricul . Sci. China 9:1140-1149.

GERHARDSON, B.; WRIGHT, S. 2002. Bacterial associations with plants: Beneficial, non N-fixing interactions. Microorganisms in Plant Conseration and Biodiversity. Kluwer Academic Publishers 79-103.

GRANDLIC, CJ.; MENDEZ, MO.; CHOROVER, J.; MACHADO, B.; MAIER, RM. 2008. Plant growth-promoting bacteria for phytostabilization of mine tailings. Int J Environ Sci Technol 42: 2079–84.

GUNTER, B.; STEPHANE, C.; BIRGIT, M.; FRIEDERIKE, T.; ANGELA, SESSITSCH. 2014. Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology 27: 30–37.

HASSAN, M.N.; OSBORN, M.; HAFEEZ, F.Y., 2010. Molecular and biochemical characterization of surfactin producing Bacillus species antagonistic to Colletotrichum falcatum Went causing sugarcane red rot. African Journal of Microbiology Research 4 (20): 2137–2142.

HERNÁNDEZ, A.; RIVES, N.; HEYDRICH, YM. 2004. Caracterización de la comunidad microbiana y endófita asociada al cultivo del arroz variedad J- 104. En: Congreso Científico del INCA (14:2004, nov 9-12, La Habana). Memorias [CD-ROM]. Instituto Nacional de Ciencias Agrícolas.

HUANG, ZJ.; CAI, XL.; SHAO, CL:, SHE, ZG.; XIA, XK.; CHEN, YG. 2008. Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp ZSU-H76.Phytochemistry 69: 1604–8.

HUA WEI Z, YOUG CHS, REN XT. 2006. Biology and chemistry of endophytes. Nat Prod Rep. 23:753-771.

HU, H.Q.; LI, X.S.; HE, H. 2010. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control 54 (3): 359–365.

IDRIS, R.; TRIFONOVA, R.; PUSCHENREITER, M.; WENZEL, W.W.; SESSITSCH, A. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70: 2667–2677.

JOURDAN, E.; HENRY, G.; DUBY, F.; DOMMES, J.; BARTHÉLEMY, P.; THONART, P.; ONGENA, M. 2009. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Molecular Plant–Microbe Interactions 22 (4): 456–468.

KAPULNIK, Y. 2002. Plant growth promoting by rhyzosphera bacteria. Plant roots the hidden half. Ed Marcel Dekker. Nueva York. Estados Unidos de América. 869-887P.

KIDD, P.; BARCELO, J.; BERNAL, MP.; NAVARI-IZZO, F.; POSCHENRIEDER, C.; SHILEV S. 2009. Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–59.

KLOEPPER, J.1983. Effect of seed piece inoculation with plant growth promoting rhizobacteria on population of Erwinia carotovora on potato roots and in daughter tubers. Phitopathology. 73: 217-219.

KNIEF, C.; DELMOTTE, N.; CHAFFRON, S.; STARK, M.; INNEREBNER, G.; WASSMANN, R.; MERING, C.; VORHOLT, JA. 2011. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J.: doi:10.1038/ismej.2011.192

KUFFNER, M.; PUSCHENREITER, M.; WIESHAMMER, G.; GORFER, M.; SESSITSCH A. 2008. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

KUIPER, I.; LAGENDIJK, E.L.; BLOEMBERG, G.V.; LUGTENBERG, B.J.J.; 2004. Rhizoremediation: A beneficial plant-microbe interaction. Mol. Plant- Microbe Interact. 17: 6–15.

LEBEAU, T.; BRAUD, A.; JÉZÉQUEL, K. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522.

LIMSUWAN, S.; TRIP, EN.; KOUWENC, T.; PIERSMAC, S.; HIRANRAT, A.; MAHABUSARAKAM, W.; ETAL, R. 2009. A new candidate as natural antibacterial drug from Rhodomyrtus tomentosa. Phytomedicine 16:645–51.

LODEWYCKX, C.; VANGRONSVELD, J.; PORTEOUS, F.; MOORE, E.R.B.; TAGHAVI, S.; MEZGEAY, M.; VAN DER LELIE, D. 2002. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21: 583–606.

LUO, S.L.; WAN, Y.; XIAO, X.; GUO, H.J.; CHEN, L.; XI, Q.; ZENG, G.M.; LIU, C.B.; CHEN, J.L. 2010. Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl. Microbiol. Biotechnol 89:1637–1644.

MA, Y.; RAJKUMAR M.; FREITAS, H. 2009. Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–7.

MA, Y.; RAJKUMAR, M.; FREITAS, H. 2009. Improvement of plant growth and nickel uptake by nickel resistant-plant growth promoting bacteria. J Hazard Mater 2009;166:1154–61.

MA, Y; RAJKUMAR M.; FREITAS H. 2009. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 2009;75:719–25.

MA, Y.; PRASAD, M.; RAJKUMAR, M.; FREITAS, H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances 29: 248–258.

MA, Y.; PRASAD, MNV.; RAJKUMAR, M.; FREITAS, H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–58.

MACÍAS-RUBALCAVA, M.; HERNÁNDEZ-BAUTISTA, B.; OROPEZA, F.; DUARTE, G.; GONZÁLEZ, M.; GLENN, A.; et al. 2010. Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis; a tropical endophytic fungus from Bursera simaruba. Journal of Chemical Ecology, 36(10): 1122–1131.

MADHAIYAN, M.; POONGUZHALI, S.; SA, T. 2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–8.

MAKSIMOV, I.V.; ABIZGILDINA, R.R.; PUSENKOVA, L.I. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Applied Biochemistry and Microbiology 47 (4): 333–345.

MELO, F.M.P.; FIORE, M.F.; MORAES, L.A.B.; STENICO, M.E.S.; SCRAMIN, S.; TEIXEIRA, M.A.; MELO, I.S. 2009. Antifungal compound produced by the cassava endophyte Bacillus pumilus MAIIIM4a. Scientia Agricola 66:593–592.

MENGONI, A.; PINI, F.; HUANG, L.N.; SHU, W.S.; BAZZICALUPO, M. 2009. Plant-by-plant variations of bacterial communities associated with leaves of the nickel hyperaccumulator Alyssum bertolonii Desv. Microbiol. Ecol. 58:660–667.

MIAO V, DAVIES J: Actinobacteria. 2010. The good, the bad, and the ugly. Anton Leeuwenhoek 98:143-150.

MOORE F. P.; BARAC T.; BORREMANS B.; OEYEN L.; VANGRONSVELD J.; VAN DER LELIE D.; CAMPBEL C. D., MOORE E. R.B. 2006. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: The characterization of isolates with potential to enhance phytoremediation. Systematic and Applied Microbiology 29:539–556.

MORATH, S.U.; HUNG, R.; BENNETT, J.W. 2012. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26(2–3): 73–83.

ONGENA, M.; JACQUES, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology 16 (3): 115–125.

ONGENA, M.; JOURDAN, E.; ADAM A.; PAQUOT, M.; BRANS, A.; JORIS, B.; ARPIGNY, J.L.; THONART, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090.

PEREZ-GARCIA, A.; ROMERO, D.; DE VICENTE, A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22 (2):187–193.

PUENTE, M.E.; LI, C.Y.; BASHAN, Y. 2009. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ. Exp. Bot. 66: 402– 408.

RADWAN, T.; MOHAMED, Z.K.; REIS, V.M. 004. Efeito da inoculacao de Azospirillum e Herbaspirillum na producao de compostos indolicos em plantulas de milho e arroz. Pesq. Agropec. Bras. Brasilia 39(10): 987-994.

RAMESHA, B.T.; SUMA, H.K.; SENTHILKUMAR, U.; PRITI, V.; RAVIKANTH, G.; VASUDEVA, R.; et al., 2013. New plantsources of the anti-cancer alkaloid, camptothecine from the Icacinaceae taxa,India. Phytomedicine 20:521–527.

RAJKUMAR, M.; AE, N.; PRASAD, MNV.; FREITAS, H. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142-149.

REITER, B.; SESSITSCH, A. 2006. Bacterial endophytes of the wildflower Crocus albi-florus analyzed by characterization of isolates and by a cultivation-independent approach. Can. J. Microbiol. 52:140–149.

REN, J.H.; LI, H.; WANG, Y.F.; YE, J.R.; YAN, A.Q.; WU, X.Q. 2013. Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against Poplar Canker, Biological Control (2013), doi: 10.1016/j.biocontrol.2013.09.012

RENTZ, J.A.; ÁLVAREZ, P. J.J.; J. SCHNOOR, L. 2004. Repression of Pseudomonas putida phenantrene-degrading activity by plant root extracts and exudates. Environ. Microbiol. 6: 574-583.

RIVERA-CRUZ, M.; FERRERA-CERRATO, C.R.; VOLKE-HALLER, V.; RODRÍGUEZ-VÁZQUEZ, R.; FERNÁNDEZ-LINARES, L. 2002. Adaptación y selección de microorganismos autóctonos en medios de cultivo enriquecidos con petróleo crudo. Terra 20:423-434.

SANG, HY.; MAYANK A.; SE-CHUL CH. 2014. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research 169: 83– 98.

SHARMA, PK.; SARITA S.; PRELL, J. 2005. Isolation and characterization of an endophytic bacterium related to Rhizobium/Agrobacterium from wheat (Triticum aestivum L.) roots. Current Science 89(4):608-610.

SARI, E.; ETEBARIAN, H.R.; AMINIAN, H. 2007. The Effects of Bacillus pumilus, Isolated from Wheat Rhizosphere, on Resistance in Wheat Seedling Roots against the Take-all Fungus, Gaeumannomyces graminis var. tritici. J. Phytopathology 155: 720–727.

SEGURA, A.; RAMOS, J.L. 2013. Plant–bacteria interactions in the removal of pollutants. Current Opinion in Biotechnology , 24:467–473.

SESSITSCH, A.; COENYE, T.; STURZ, A.V.; VANDAMME, P.; AIT B.E.; WANG-PRUSKI, G.; FAURE, D.; REITER, B.; GLICK, B.R.; NOWAK, J. 2005. Burkholderia phytofirmins sp. Nov., a novel plant-associated bacterium with plant beneficial properties. Int. J. Syst. Evol. Microbiol. 55: 1187–1192.

SESSITSCH, A.; KUFFNER, M.; KIDD, P.; VANGRONSVELD, J.; WENZEL, W.; FALLMANN, K.; PUSCHENREITER, M. 2013. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology & Biochemistry 60: 182 - 194.

SHARMA, R.R.; SINGH, D.; SINGH, R. 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biological Control 50 (3): 205–221.

SHAW, L. J.; BURNS, R. G. 2003. Biodegradation of organic pollutants in the rhizosphere. Adv. Appl. Microbiol. 53: 1-60.

SHWETA, S.; GURUMURTHY, B.R.; RAVIKANTH, G.; RAMANAN, U.S.; SHIVANNA, M.B. 2013. Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid,camptothecine. Phytomedicine 20: 337–342.

STEIN, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology 56:845–857.

STONE, JK.; BSCON, CW.; WHITE, JR. 2000. An overview of endophytic microbes: endophytism defined [J]. In: Becon CW, White Jr JF, editors. Microbial Endophytes. New York: Marcel Dekker; p.3–29.

STROBEL, G.; DAISY, B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews 67(4):491– 502.

SUN, Y.; CHENG, Z.; GLICK, B.R. 2009. The presence of a 1- aminocyclopropane-1- carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PSJN. FEMS Microbiol. Lett. 296: 131–136.

TAECHOWISAN, T.; LU, C.H.; SHEN, Y.M.; LUMYONG, S. 2007. Antitumor activity of 4-arylcoumarins from endophytic Streptomyces aureofaciens CMUAc130. Journalof Cancer and Research Treatment 3:86–91

THAKURIA, D.; TALUKDAR, N. C.; GOSWAMI, C.; HAZARIKA, S.; BORO, R. C. Y KHAN, M. R. 2004. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Current Science 86(7): 978- 985

TOP, E.M.; SPRINGAEL, Y D. 2003. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr. Op. Biotechnol. 14: 262-269.

TSAVKELOVA, EA.; CHERDYNTSEVA, TA.; BOTINA, SG.; NETRUSOV, AL. 2007. Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res.162(1):69-76.

VAN A. 2004. Biodegradation of Nitro-Substituted Explosives 2,4,6- Trinitrotoluene, Hexahydro-1,3,5-Trinitro-1,3,5-Triazine, and Octahydro-1,3,5,7- Tetranitro-1,3,5-Tetrazocine by a Phytosymbiotic Methylobacterium sp. Associated with Poplar Tissues (Populus deltoides!nigra DN34). Applied Environmental Microbiology. 70: 508–517.

VAN DER LELIE D., BARAC T., TAGHAVI S., VANGRONSVELD J. 2005. Response to Newman. New uses of endophytic bacteria to improve phytoremediation. TRENDS in Biotechnology 23(1): 8-12.

VERMA, S.C.; LADHA, J.K.; TRIPATHI, A.K. 2001. Evaluation of plant growth promot-ing and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol. 91:127–141.

WAKELIN, S.; et al., 2004. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol. Fert. Soils 40:36–43.

WANG, Y.; DAI, C. C. 2011. Endophytes: A potential resource for biosynthesis, biotransformation, and biodegradation. Annals of Microbiology, 61(2): 207–215.

WELBAUM, GE.; STURZ, AV.; DONG, Z.; NOWAK, J.2004. Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–93.

WEYENS, N.; VAN DER LELIE, D.; TAGHAVI, S.; VANGRONSVELD, J. 2009. Phytoremediation: plant-endophyte partnerships take the challege. Curr. Opin. Biotechnol. 20: 1–7.

WEYENS, N.; VAN, DER LELIE.; D., TAGHAVI, S.; VANGRONSVELD, J. 2009. Phytoremediation: plant-endophytec partnerships take the challenge. Current Opinion in Biotechnology 20: 248 - 254.

ZHANG, YF.; HE, LY.; CHEN, ZJ.; ZHANG, WH.; WANG, QY.; QIAN, M. et al. 2011. Characterization of lead- 1271 resistant and ACC deaminase-producing endophytic bacteria and their potential in 1272 promoting lead accumulation of rape. J Hazard Mater 186:720–5.

ZHI-LIN, Y.; YI-CUN, C.; BAI-GE, X.; CHU-LONG, Z. 2012. Current perspectives on the volatile-producing fungal endophytes. Critical Reviews in Biotechnology, 32(4):363–373.

Citado por

Artículos similares

También puede {advancedSearchLink} para este artículo.