Principales estrategias en la obtención de poliploides en moluscos bivalvos
Main strategies to obtain polyploids in bivalve molluscs

Contenido principal del artículo

Autores

Alexander Varela-Mejías https://orcid.org/0000-0002-5642-2160

Ramsés Alfaro-Mora, Dr. https://orcid.org/0000-0002-7331-9405

Resumen

El crecimiento en la producción de moluscos se atribuye principalmente al aumento de las especies cultivadas, a la expansión de las regiones geográficas de producción y al mejoramiento de las técnicas productivas. Las líneas cultivadas han sido sometidas a estudios rigurosos sobre sus sistemas biológicos, su potencial y mejora genética. Entre las estrategias utilizadas, el uso de poliploides ha permitido grandes avances zootécnicos, al mismo tiempo que ha representado grandes desafíos técnicos. El presente trabajo describe las principales técnicas de inducción a poliploidías, así como sus limitantes y desafíos. Se describen los métodos físicos y químicos de inducción y sus principales características y resultados obtenidos.

Palabras clave:

Detalles del artículo

Referencias

1. FAO. El estado mundial de la pesca y la acuicultura. Cumplir los objetivos de desarrollo sostenible. Roma: Food and Agriculture Organization of the United Nations; 2018; http://www.fao.org/3/i9540es/i9540es.pdf

2. Lodeiros C, Rodríguez-Pesantes D, Márquez A, Revilla J, Chávez-Villalba J, Sonnenholzner S. Suspended cultivation of the Pacific oyster Crassostrea gigas in the Eastern Tropical Pacific. Aquacult Int. 2017; 26:337-347. https://doi.org/10.1007/s10499-017-0217-z

3. Nell J A. Farming triploid oysters. Aquaculture. 2002; 210:69–88. http://pacifichybreed.com/wp-content/uploads/2019/11/Nell-2002-Aquaculture-farming-triploid-oysters.pdf

4. Cáceres J, Vásquez R. Manual de buenas prácticas para el cultivo de moluscos bivalvos. OIRSA OSPESCA. 2014. https://isamx.org/sitio/pdfs/Manual%20de_BPde_M_Version%20Digital_011014155613.pdf

5. Maldonado-Amparo R, Ruiz C A, Ibarra A M, Rueda-Puente E O, del Toro C L, Rodríguez F. Poliploidía en moluscos de importancia comercial. A Review. European Scientific Journal. 2016; 12(33):1857-7881. https://doi.org/10.19044/esj.2016.v12n33p69

6. Yang H, Guo X, Scarpa J. Induction and Establishment of Tetraploid Oyster Breeding Stocks for Triploid Oyster Production. FA215. School of Forest Resources and Conservation, Program in Fisheries and Aquatic Sciences, UF/IFAS Extension. 2019; https://edis.ifas.ufl.edu/fa215

7. Varela A, Barbosa W. Captura, selección e ingestión de partículas en Ostreidae (Bivalvia): Crassostrea spp. AquaTechnica, 2020; 2(3):161-181. http://dx.doi.org/10.33936/at.v2i3.3091

8. Guo X, Wang Y, Xu Z, Yang H. Chromosome Set Manipulation in Shellfish. In: New Technologies in Aquaculture: Improving Production Efficiency, Quality and Environmental Management (eds. Burnell, G & Allen, G), Woodhead Publishing Limited: Abington, Cambridge; 2009

9. Villanueva-Fonseca B P, Góngora-Gómez A M, Muñoz-Sevilla N P, Domínguez-Orozco A L, Hernández-Sepúlveda J A, García-Ulloa M, Ponce-Palafox J T. Growth and economic performance of diploid and triploid Pacific oysters Crassostrea gigas cultivated in three lagoons of the Gulf of California. Lat. Am. J. Aquat. Res., 2017; 45(2):466-480. http://dx.doi.org/10.3856/vol45-issue2-fulltext-21

10. Mazón S J M. Cultivo del Ostión Japonés Crassostrea gigas. En: Casas, V.; Ponce, D, G. eds. Estudio del potencial pesquero y acuícola de Baja California Sur. Baja California Sur, México: 1996. http://dspace.cibnor.mx:8080/handle/123456789/1723

11. Rodríguez-Quiroz G, García-Ulloa G, Domínguez-Orozco A L, Valenzuela-Hernández T N, Nava-Pérez E, Góngora-Gómez A M. Relación del crecimiento, condición y supervivencia del ostión del Pacífico Crassostrea gigas y las variables ambientales, cultivado en suspensión en el Sistema lagunar Navachiste-Macapule, Sinaloa, México. Revista de Biología Marina y Oceanografía. 2016; 51(3):541-551. http://dx.doi.org/10.4067/S0718-19572016000300006

12. Escudeiro A. Crecimiento y reproducción de la ostra rizada, Crassostrea gigas (Thunberg, 1793), cultivada en intermareal y en Batea de Galicia (NW España). Universidade do Algarve Facultade de ciencias do mar e do ambiente. Centro de investigacóns mariñas (CIMA). Consellería de Pesca, Marisqueo e Acuicultura. Xunta de Galicia. 2006. https://core.ac.uk/download/pdf/61504226.pdf

13. García-Ulloa M, Góngora-Gómez A M, Hernández-Sepúlveda J A. Manual para el policultivo de bivalvos en México. Validación tecnológica. Aqua Ediciones. 2018.

14. Chavez-Villalba J, Pommier J, Andriamiseza J, Pouvreau S, Barret J, Cochard J C, Le Pennec M. Broodstock conditioning of the oyster Crassostrea gigas: origin and temperature effect. Aquaculture. 2002; (214):115–130. http://dx.doi.org/10.1016/S0044-8486(01)00898-5

15. García-Bernal M, Medina-Marrero R, Mazón-Suástegui J M, Arcos-Ortega G F, Tordecillas-Guillén J L, Barajas-Ponce U. Preengorda de semillas de ostra americana Crassostrea virginica con aplicación de actinomicetos probióticos y medicamentos homeopáticos. AquaTechnica. 2020; 2(3):150-160. http://dx.doi.org/10.33936/at.v2i3.3086

16. Martínez P. Aplicaciones de la genética para la mejora de la acuicultura. Bol. Inst. Esp. Oceanogr. 2005; 21(1-4):225-238. https://core.ac.uk/download/pdf/71764913.pdf

17. Rodriguez-Romero F, Gasca-Montes de Oca M. Los cromosomas del hibrido experimental de Crassostrea Virginica Gmelin 1791 y Crassostrea rhizophorae Guilding 1828 (Pseudolamellibranchiata: ostreidae). Ciencias Marinas. 1998; 24(1):55-63. http://dx.doi.org/107773/cm.v24l.736

18. Que H, Allen SK. Hybridization of tetraploid and diploid Crassostrea gigas (Thumberg) with diploid C. ariakensis (Fujita). Journal of shellfish Research. 2002; 27:137-143. https://core.ac.uk/download/pdf/235399191.pdf

19. Thiriot-Quievreux C. Review of literature of bivalve cytogenetic in the last ten years. Cahiers de Biologie Marine. 2002; (43) 17-26. http://dx.doi.org/10.21411/CBM.A.4BE6D552

20. Hernández NK, Marquéz C, Cruz P. Poliploidía y ginogénesis en abulón rojo (Haliotis rufescens), certificación genética de genética de abulón rojo y azul (Haliotis fulgens), y cariotipos de especies parentales. [Tesis de maestría]. Centro de Investigaciones Biológicas del Noroeste; México; 2004.

21. Allen SK. Triploid oysters ensure year-round supply. Oceanus. 1988; 31:58-63.

22. McCombie H, Ledu C, Phelipot P, Lapègue S, Boudry P, Gérard A. A complementary method for production of tetraploid Crassostrea gigas using crosses between diploids and tetraploids with Cytochalasin B treatments. Marine Biotechnology. 2005; 7(4):318-330. http://dx.doi.org/10.1007/s10126-004-0440-2

23. Revilla D, Báez F, García Y, Severeyn H, Villamediana P. Inducción química de poliploidía en el molusco bivalvo Polymesoda solida (Philippi, 1846) (Bivalvia: Corbiculidae). Boletín del Centro de Investigaciones Biológicas. 2016; 50(2):121-133. https://produccioncientificaluz.org/index.php/boletin/article/view/22901

24. Rasmussen R S, Morrissey M T. Biotechnology in Aquaculture: Transgenics and Polyploidy. Comprehensive Food Science and Food Safety. 2007; 6(1):2-16. https://doi.org/10.1111/j.1541-4337.2007.00013.x

25. Guo X, Cooper K, Hershberger W K, Chew K K. Genetic Consequences of Blocking Polar Body I with Cytochalasin B in Fertilized Eggs of the Pacific Oyster, Crassostrea gigas: I. Ploidy of Resultant Embryos. Biol Bull. 1992; 183:381-386. https://doi.org/10.2307/1542013

26. FAO. Food and Agriculture Organization of the United Nations. (2006). Cultivo de bivalvos en criadero Un manual práctico. Documento técnico de pesca 471. Roma, Italia; 2006. http://www.fao.org/3/y5720s/y5720s00.htm

27. Que H, Guo X, Zhang F, Allen S K. Chromosome segregation in fertilized eggs from triploid Pacific oysters, Crassostrea gigas (Thunberg), following inhibition of polar body 1. Biological Bulletin, 1997; 193(1):14-19. https://doi.org/10.2307/1542732

28. Wang Z, Guo X, Allen S K, Wang R. Aneuploid Pacific oyster (Crassostrea gigas, Thunberg) as incidentals from triploid production. Aquaculture 1999; 173:347–357. https://doi.org/10.1016/S0044-8486(98)00457-8

29. Stanley J G, Allen S K, Hidu H. Polyploidy induced in the American oyster, Crassostrea virginica, with Cytochalasin B. Aquaculture, 1981; 23:1-10. https://doi.org/10.1016/0044-8486(81)90002-8

30. de Sousa JT, Allen SK, Wolfe BM, Moss JA. Mitotic instability in triploid and tetraploid one-year-old eastern oyster, Crassostrea virginica, assessed by cytogenetic and flow cytometry techniques. Genome. 2018; 61(2). https://doi.org/10.1139/gen-2017-0173

31. Piferrer F, Beaumont A, Falguière J C, Flajšhans M, Haffray P, Colombo L. Polyploid fish and shellfish: Production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 2009; 293:125–156. https://doi.org/10.1016/j.aquaculture.2009.04.036

32. Yamamoto S, Sugawara Y. Induced triploidy in the mussel Mytilus edulis, by temperature shock. Aquaculture. 1988; 72:21-29 https://doi.org/10.1016/0044-8486(88)90143-3

33. Li X. Experimental production of tetraploid oysters for use as broodstock for commercial hatchery production of triploids. FRDC Project No. 1994/081. SARDI Aquatic Sciences Publication: Australia. 2007; https://www.frdc.com.au/Archived-Reports/FRDC%20Projects/1994-081-DLD.PDF

34. Canello OF, Paredes OL, Toro YJ. Inducción a la triploidía en el ostión del norte Argopecten purpuratus, por medio de shock térmico de calor. Inv Pesq Chile. 1992; 37:5-11.

35. Downing S L; Allen S K. Induced Triploidy in the Pacific Oyster, Crassostrea gigas: optimum treatments with Cytochalasin B Depend on Temperature. Aquaculture. 1987; 61:1-15. https://doi.org/10.1016/0044-8486(87)90332-2

36. Chaiton J, Allen S K. Early detection of triploidy in the larvae of Pacific oysters, Crassostrea gigas, by flow cytometry. Aquaculture. 1985; 48:35-43. https://doi.org/10.1016/0044-8486(85)90050-X

37. Maldonado-Amparo R, Ibarra, A M, Ramírez J L. Inducción a la tetraploidía en almeja catarina, Argopecten ventricosus (Sowerby II, 1842). Ciencias Marinas. 2003; 29(2):229–238. http://dx.doi.org/10.7773/cm.v29i2.143

38. Pielak R M, Gaysinskayay V A, Cohen W D. Formation and function of the polar body contractile ring in Spisula. Developmental Biology. 2004; 269:421-443. https://doi.org/10.1016/j.ydbio.2004.01.033

39. Yang H, Guo X. Tetraploid induction by inhibiting mitosis I with heat shock, cold shock, and Nocodazole in the hard clam Mercenaria mercenaria (Linnaeus, 1758). Mar Biotechnol. 2006; 8:501–510. https://doi.org/10.1007/s10126-005-6183-x

40. MacLean-Fletcher S, Pollard T D. Mechanism of Action of Cytochalasin B on Actin Cell. 1980; 20:329-341. https://doi.org/10.1016/0092-8674(80)90619-4

41. Zalacain M, Sierrasesúmaga L, Patiño A. El ensayo de micronúcleos como medida de inestabilidad genética inducida por agentes genotóxicos. An Sit Sanit Navar. 2005; 28(2):227-236. https://hdl.handle.net/10171/23747

42. Peachey B L, Allen S K. Evaluation of cytochalasin B and 6-dimethylaminopurine for tetraploidy induction in the Eastern oyster, Crassostrea virginica. Aquaculture. 2016; 450:199-205. https://doi.org/10.1016/j.aquaculture.2015.07.034

43. Tian C, Wang R, Liang Y, Wang Z, Yu R. Triploidy of Crassostrea gigas induced with 6-DMAP: by blocking of the second polar body of the zygotes. J Fish Sci. China 1999; 6(2):1-4. https://www.sciengine.com/publisher/zhongkeqikan/journal/JFSC/27/7?slug=browse

44. Desrosiers R R, Gerard A, Peignon J M, Naciri Y, Dufresne L, Morasse J, Ledu C, Phelipot P, Guerrier P, Dube F. A novel method to produce triploid embryos in bivalve mollusks by the use of 6-dimethylaminupurine. J Exp Mar Biol Ecol. 1993; 170:29-43. https://doi.org/10.1016/0022-0981(93)90127-A

45. Saha S, Pal D. Log P. Encyclopedia of Physical Organic Chemistry (1ª ed.). USA: Zerong Wang; 2017.

46. Dufresne L, Néant I, ST-Pierre J, Dubé F, Guerrier P. Effects of 6-dimethylaminopurine on microtubules and putative intermediate filaments in sea urchin embryos, J Cell Science. 1991; 99:721-730. https://journals.biologists.com/jcs

47. Ghosh S, Jha S. Colchicine – an Overview for Plant Biotechnologists. In: Ramawat K., Merillon J. (eds) Bioactive Molecules and Medicinal Plants. Springer: Berlin, Heidelberg; 2008; https://doi.org/10.1007/978-3-540-74603-4_11

48. Feitosa A, Dias A, Ramos G, Bitencourt H, Siqueira J, Marinho P. Lethality of cytochalasin B and other compounds isolated from fungus Aspergillus sp. (Trichocomaceae) endophyte of Bauhinia guianensis (Fabaceae). Rev Argent Microbiol. 2016; 48(3):259-263. https://doi.org/10.1016/j.ram.2016.04.002

49. Pisciottani A, Biancolillo L, Ferrara M, Valente D, Sardina F, Monteonofrio L, Camerini S, Crescenzi M, Soddu S, Rinaldo S. HIPK2 Phosphorylates the Microtubule-Severing Enzyme Spastin at S268 for Abscission. Cells. 2019; 8(7) 684. https://doi.org/10.3390/cells8070684

50. Allen S K. Estimating the ecological impact of triploid Crassostrea gigas: what is the meaning of sterility? FASIP Leave Report, Unité de Recherche en Génétique et Encloserie, IFREMER. La Tremblade: France; 1994.

51. Guo X, de Brosse G A, Allen S K. All triploid Pacific oysters (Crassostrea gigas Thunberg) produced by mating tetraploids and diploids. Aquaculture. 1996; 142:149-161. https://doi.org/10.1016/0044-8486(95)01243-5

52. Yang H, Guo X, Scarpa J. Tetraploid Induction and Establishment of Breeding Stocks for All-Triploid Seed Production: FA215, 5/2019. UF/IFAS. 2019; 2019:3. https://doi.org/10.32473/edis-fa215-2019

53. Qui L, Kijima A. Gynogenetic tetraploid larvae of the pacific oyster Crassostrea gigas induced by inhibition of the 1st and 2nd meiotic divisions. Tohoku J of Agric Res. 2006; 57(1-2):1-10. http://hdl.handle.net/10097/40396

54. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications, Critical Reviews in Biotechnology, 2016; https://doi.org/10.3109/07388551.2015.1128876

55. Figueras A, Novoa B. Enfermedades de moluscos bivalvos de interés en Acuicultura. Fundación Observatorio Español de Acuicultura - Consejo Superior de Investigaciones Científicas- Ministerio de Medio Ambiente y Medio Rural y Marino: España; 2011.

56. Guo X, Allen S K. Viable tetraploids in the pacific Oyster (Crassostrea gigas Thunberg) produced by inhibition polar body l in eggs from triploids. Molecular Marine Biology and Biotechnology, 1994; 3(1):42-50. http://www.springerlink.com/openurl.asp?genre=journal&issn=1053-6426

57. Scarpa J, Wada K T, Komaru A. Induction of tetraploidy in mussels by suppression of polar body formation. Nippon Suisan Gakkaishi. 1993; 59:2017–2023. http://www.miyagi.kopas.co.jp/JSFS/jsfs-english/E-PUB/index.html

58. Li X, Kijima, A. Gynogenetic tetraploid larvae of Pacific oyster Crassostrea gigas induced by inhibition of 1st and 2nd meiotic divisions. Tohoku Journal of Agricultural Research. 2006; 57(1-2). http://hdl.handle.net/10097/40396

59. Guo X, Hershberger W K, Cooper K, Chew K K. Tetraploid induction with mitosis l, inhibition and cell fusion in the Pacific oyster (Crassostrea gigas Thunberg). J Shellfish Res. 1994; 13:193-198. https://www.shellfish.org/jsr-public

Descargas

La descarga de datos todavía no está disponible.