El efecto protector del ácido p-cumárico sobre la hepatotoxicidad, nefrotoxicidad y neurotoxicidad inducidas por tolueno en ratas
The protective effect of p-coumaric acid on toluene-induced hepatotoxicity, nephrotoxicity and neurotoxicity in rats

Contenido principal del artículo

Autores

Fatma Sahindokuyucu-Kocasarı https://orcid.org/0000-0002-6123-4762

Selinay Basak Erdemli-Kose https://orcid.org/0000-0001-8986-585X

Zeki Erol https://orcid.org/0000-0002-1563-0043

Simge Garlı https://orcid.org/0000-0002-9818-5212

Resumen

Objetivo. El objetivo de este estudio ha sido determinar el efecto protector del ácido p-cumárico (p-CA) contra la hepatotoxicidad, nefrotoxicidad y neurotoxicidad inducida por tolueno en ratas. Materiales y métodos. Se utilizaron un total de 32 ratas macho Sprague-Dawley, 8 en cada grupo. Se formaron 4 grupos: el de control, tolueno, p-CA y tolueno + p-CA. Los animales del grupo de control, el grupo de tolueno y el grupo de p-CA recibieron NaCl al 0.9%, 0.9 mg/kg de peso corporal de tolueno y 100 mg/kg de peso corporal de p-CA por vía oral durante 21 días, respectivamente. Resultados. En este estudio, se determinó que hubo aumentos significativos en las actividades de ALT y AST, y los niveles de creatinina en el grupo inducido por tolueno en comparación con el grupo de control. Además, hubo una disminución en las actividades de GSH-Px y los niveles de GSH, y un aumento en los niveles de MDA en comparación con el grupo de control. Sin embargo, en el grupo de tolueno + p-CA, se observaron disminuciones significativas en las actividades de las aminotransferasas, niveles de creatinina y MDA, y aumentos significativos en las actividades de GSH-Px y los niveles de GSH en comparación con el grupo de tolueno. Conclusiones. Se ha determinado que el p-CA tiene un efecto protector contra la hepatotoxicidad, nefrotoxicidad y neurotoxicidad inducidas por el tolueno.

Palabras clave:

Detalles del artículo

Referencias

1. Ketan V, Desai K, George L, Highland H. Evidence of oxidative stress, biochemical and histological alterations in kidney and liver on short term inhalation of a specific mixture of organic solvents. IJPHC. 2013; 3(6):113-130. https://doi.org/10.12691/env-3-3-5

2. Meydan S, Nacar A, Ozturk HO, Tas U, Köse E, Zararsiz I, et al. The protective effects of caffeic acid phenethyl ester against toluene-induced nephrotoxicity in rats. Toxicol Ind Health. 2013; 32(1):15-21. https://doi.org/10.1177/0748233713485890

3. Afravy M, Angali K, Khodadadi A, Ahmadizadeh M. The protective effect of Buffalo’s milk against toluene induced-nephotoxicity in rats. J Nephropathol. 2017; 6(3):174-179. https://doi.org/10.15171/jnp.2017.30

4. Stajković SS, Borozan SZ, Gađanski-Omerović G. The effect of toluene on oxidative processes in rat blood. J Serb Chem Soc. 2009; 74(1):15-25. https://doi.org/10.2298/JSC0901015S

5. Agency of Toxic Substances and Disease Registry (ATSDR) Toxicological profile for toluene [Internet]. U.S. Department Of Health And Human Services Public Health Service Agency for Toxic Substances and Disease Registry; 2017. Available from: http://www.atsdr.cdc.gov/toxprofiles/tp56.pdf

6. EPA. Toxicological review of toluene. [Internet]. United States Environmental Protection Agency: Washington DC; 2005. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0118tr.pdf

7. Božić TP, Stevanović JŽ, Kovačević MM, Jović SZ, Lukić S, Petakov MD, et al. Toluene mediated oxidative stress and granulo-monocytopoiesis. Acta Vet Scand. 2003; 53(4):201-210. https://doi.org/10.2298/AVB0304201B

8. Ahmadizadeh M, Amirmoezy S, Pole T. Effects of toluene on rat kidney. Jundishapur J Healthy Sci. 2014; 6(1):281-287. https://sites.kowsarpub.com/jjhs/articles/77027.html

9. Benignus VA, Muller KE, Barton CN, Bittikofer JA. Toluene levels in blood and brain of rats during and after respiratory exposure. Toxicol Appl Pharmacol. 1981; 61(3):326-334. https://doi.org/10.1016/0041-008x(81)90353-7

10. Myhre O, Fonnum F. The effect of aliphatic, naphthenic, and aromatic hydrocarbons on production of reactive oxygen species and reactive nitrogen species in rat brain synaptosome fraction: the involvement of calcium, nitric oxide synthase, mitochondria, and phospholipase A. Biochem Pharmacol. 2001; 62(1):119-128. https://doi.org/10.1016/s0006-2952(01)00652-9

11. Karabulut I, Balkanci ZD, Pehlivanoglu B, Erdem A, Fadillioglu E. Effect of toluene on erythrocyte membrane stability under in vivo and in vitro conditions with assessment of oxidant/antioxidant status. Toxicol Ind Health. 2009; 25(8):545-550. https://doi.org/10.1177/0748233709346758

12. Kumar CA, Das UN. Oxidant stress in preeclempsia and essential hypertension. J Assoc Phys India. 2002; 50:1372-1375. https://pubmed.ncbi.nlm.nih.gov/12583464/

13. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signaling. Curr Med Chem. 2004; 11:1163-1182. https://doi.org/10.2174/0929867043365323

14. Abdel-Wahab MH, El-Mahdy MA, Abd-Ellah MF, Helal GK, Khalifa F, Hamada FM. Influence of p-coumaric acid on doxorubicin-induced oxidative stress in rat’s heart. Pharmacol Res. 2003; 48(5):461-465. https://doi.org/10.1016/s1043-6618(03)00214-7

15. Jyoti Roy A, Stanely Mainzen Prince P: Preventive effects of p-coumaric acid on lysosomal dysfunction and myocardial infarct size in experimentally induced myocardial infarction. Eur J Pharmacol. 2013; 699(1-3):33-39. https://doi.org/10.1016/j.ejphar.2012.11.006

16. Huang X, You Y, Xi Y, Ni B, Chu X, Zhang R, et al. p-Coumaric acid attenuates IL-1β-induced inflammatory responses and cellular senescence in rat chondrocytes. Inflammation. 2020; 43(2):619-628. https://doi.org/10.1007/s10753-019-01142-7

17. Jaffè M. Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins. Biol Chem. 1886; 10(5):391-400. https://doi.org/10.1515/bchm1.1886.10.5.391

18. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968; 25(1):192-205. https://doi.org/10.1016/0003-2697(68)90092-4

19. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967; 70(1):158-169. https://pubmed.ncbi.nlm.nih.gov/6066618/

20. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2):351-358. https://doi.org/10.1016/0003-2697(79)90738-3

21. Gornall AG, Bardawill CJ, David MM. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949; 177(2):751-766. https://pubmed.ncbi.nlm.nih.gov/18110453/

22. Mattia CJ, Adams Jr JD, Bondy SC. Free radical induction in the brain and liver by products of toluene catabolism. Biochem Pharmacol. 1993; 46(1):103-110. https://doi.org/10.1016/0006-2952(93)90353-x

23. Mattia CJ, Ali SF, Bondy SC. Toluene-induced oxidative stress in several brain regions and other organs. Mol Chem Neuropathol. 1993; 18(3):313-328. https://doi.org/10.1016/0006-2952(93)90353-x

24. El-Nabi K, Shehata M. Effect of toluene exposure on the antioxidant status and apoptotic pathway in organs of the rat. Br J Biomed Sci. 2008; 65(2):75-79. https://doi.org/10.1080/09674845.2008.11732801

25. Tas U, Ogeturk M, Meydan S, Kus I, Kuloglu T, Ilhan N, et al. Hepatotoxic activity of toluene inhalation and protective role of melatonin. Toxicol Ind Health. 2011; 27(5):465-473. https://doi.org/10.1177/0748233710389853

26. Amalan V, Vijayakumar N. Antihyperglycemic effect of p-coumaric acid on streptozotocin induced diabetic rats. Indian J Appl Res. 2015; 5(1):10-13. https://www.worldwidejournals.com/indian-journal-of-applied-research-(IJAR)/fileview/January_2015_1421736837__04.pdf

27. Ekinci-Akdemir FN, Albayrak M, Calik M, Bayir Y, Gul I. The protective effects of p-coumaric acid on acute liver and kidney damages induced by cisplatin. Biomedicines. 2017; 5(2):18. https://doi.org/10.3390/biomedicines5020018

28. Adel A, Eman SA, Sanaa MA, Mohamed BA, Ahmed IY. Assessment of the ameliorative effect of p-coumaric acid and gallic acid on oxidative stress and haematological abnormalities in experimental type 2 diabetes. Gen Med Open. 2018; 2(6):1-6. https://doi.org/10.15761/GMO.1000150

29. Tanyeli A, Güzel D. Protective effect of p-coumaric acid as free oxygen radical scavenger in experimental renal ischemia-reperfusion model. Sakarya Medical Journal. 2018; 8(3):625-631. https://doi.org/10.31832/smj.455724

30. Sabitha R, Nishi K, Gunasekaran VP, Annamalai G, Agilan B, Ganeshan M. p-coumaric acid ameliorates ethanol-induced kidney injury by inhibiting inflammatory cytokine production and NF-κB signaling in rats. Asian Pac J Trop Biomed. 2019; 9(5):188-195. https://doi.org/10.4103/2221-1691.258998

31. Abdel-Salam OM, Youness ER, Morsy FA, Yassen NN, Mohammed NA, Sleem AA. Methylene blue protects against toluene-induced brain damage: involvement of nitric oxide, NF-κB, and caspase-3. ROS. 2016; 2(5):371-387. https://doi.org/10.20455/ros.2016.855

32. Coskun O, Yuncu M, Kanter M, Büyükbas S. Ebselen protects against oxidative and morphological effects of high concentration chronic toluene exposure on rat sciatic nerves. Eur J Gen Med. 2006; 3(2):64-72. https://doi.org/10.29333/ejgm/82380

33. Kodavanti PR, Royland JE, Richards JE, Besas J, Macphail RC. Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats. Toxicol Appl Pharmacol. 2011; 256(3):386-398. https://doi.org/10.1016/j.taap.2011.04.012

34. Montes S, Yee-Rios Y, Páez-Martínez N. Environmental enrichment restores oxidative balance in animals chronically exposed to toluene: comparison with melatonin. Brain Res Bull. 2019; 144:58-67. https://doi.org/10.1016/j.brainresbull.2018.11.007

35. Guven M, Aras AB, Akman T, Sen HM, Ozkan A, Salis O, et al. Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia. Iran J Basic Med Sci. 2015; 18(4):356-363. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4439450/

36. Sakamula R, Thong-Asa W. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metab Brain Dis. 2018; 33(3):765-773. https://doi.org/10.1007/s11011-018-0185-7

37. Meydan S, Esrefoglu M, Selek S, Akbas Tosunoglu E, Ozturk O, Kurbetli N, et al. Protective effects of caffeic acid phenethyl ester and thymoquinone on toluene induced liver toxicity. Biotech Histochem. 2019; 94(4):277-282. https://doi.org/10.1080/10520295.2018.1554825

38. Bae SW, Yoon IS. The benefical effects of melatonin for toluene hepatotoxicity in rats. Int J Biomed Sci. 2001; 7:99-102. https://www.koreascience.or.kr/article/JAKO200111921443784.pdf

39. Moro AM, Brucker N, Charão M, Bulcão R, Freitas F, Baierle M, et al. Evaluation of genotoxicity and oxidative damage in painters exposed to low levels of toluene. Mutat Res. 2012; 746(1):42-48. https://doi.org/10.1016/j.mrgentox.2012.02.007

40. Meydan S, Nacar A, Oztürk HO, Tas U, Köse E, Zararsiz I, et al. The protective effects of caffeic acid phenethyl ester against toluene-induced nephrotoxicity in rats. Toxicol Ind Health. 2016; 32(1):15-21. https://doi.org/10.1177/0748233713485890

41. Parvizi F, Yaghmaei P, Rohani SAH, Mard SA. Hepatoprotective properties of p-coumaric acid in a rat model of ischemia-reperfusion. Avicenna J Phytomed. 2020; 10(6):633. https://pubmed.ncbi.nlm.nih.gov/33299819/

42. Moneim AA, Abd El-Twab SM, Ashour MB, Yousef AI. Hepato-renal protective effects of gallic acid and p-coumaric acid in nicotinamide/streptozotocin-induced diabetic rats. Int J Bioassays. 2016; 5(6):4641-4649. https://doi.org/10.21746/ijbio.2016.06.0011

43. Cha H, Lee S, Lee JH, Park, JW. Protective effects of p-coumaric acid against acetaminophen-induced hepatotoxicity in mice. Food Chem Toxicol. 2018; 121:131-139. https://doi.org/: 10.1016/j.fct.2018.08.060

44. Mohamadi Yarijani Z, Najafi H, Madani SH. Protective effect of p-Coumaric acid against cisplatin-induced nephrotoxicity and hepatotoxicity in rats. J Mazandaran Univ Med Sci. 2020; 30(185):1-13. http://jmums.mazums.ac.ir/article-1-14504-en.html

Descargas

La descarga de datos todavía no está disponible.