Vacunas anticonceptivas y para inmunocastración. Su aplicación en la Medicina Veterinaria.

Contraception and immunocastration vaccines. Use in veterinary medicine

Contenido principal del artículo

Ana Cristina Campal-Espinosa
Center of Genetic Engineering and Biotechnology. Research-Development Department. Biomedical Research Group. Camagüey, Cuba
Jesús Arturo Junco-Barranco
Center of Genetic Engineering and Biotechnology. Research-Development Department. Biomedical Research Group. Camagüey, Cuba.
Franklin Fuentes-Aguilar
Center of Genetic Engineering and Biotechnology. Research-Development Department. Biomedical Research Group. Camagüey, Cuba.
Lesvia Calzada-Aguilera
Center of Genetic Engineering and Biotechnology. Research-Development Department. Biomedical Research Group. Camagüey, Cuba.
Ana Claudia Bover Campal
Eduardo Agramonte Piña Children’s University Hospital. Immunology Department. Camagüey, Cuba

Resumen

A nivel mundial, el desarrollo y la aplicación de vacunas para controlar la fertilidad en los animales, está creciendo indeteniblemente. En los últimos años se han corroborado sus beneficios productivos para el manejo y el bienestar de los animales, lo que ha contribuido a mejorar la percepción pública sobre sus impactos. Este artículo revisa los avances obtenidos en este campo, en particular, las vacunas de inmunocastración, tras la evaluación de los resultados de su aplicación en los últimos años. Las principales dianas antigénicas de estas vacunas son las proteínas de la zona pelúcida, las proteínas estructurales de los espermatozoides y las hormonas sexuales. En la actualidad están disponibles en el mercado varias vacunas basadas en GnRH, con eficacia y eficiencia comprobadas para la inmunocastración de los machos y el control de la fertilidad en las hembras. Sin embargo, los investigadores deberán resolver cuestiones como la reducción del número de inmunizaciones, el logro de una mayor inmunogenicidad y el desarrollo de nuevas formulaciones para facilitar la aplicación y liberación de estas vacunas en los diversos hábitats donde transcurre la vida animal y en las diferentes condiciones de la crianza ganadera. El control de la fertilidad basado en métodos que garantizan la eficiencia productiva y el bienestar animal es una necesidad incesante de la práctica moderna de la medicina veterinaria.

Descargas

Los datos de descargas todavía no están disponibles.

Datos de publicación

Metric
Este artículo
Otros artículos
Revisores/as por pares 
0
2.4

Perfil evaluadores/as  N/D

Declaraciones de autoría

Declaraciones de autoría
Este artículo
Otros artículos
Disponibilidad de datos 
N/D
16%
Financiación externa 
No
32%
Conflictos de intereses 
N/D
11%
Metric
Esta revista
Otras revistas
Artículos aceptados 
0%
33%
Días para la publicación 
97
145

Indexado en

Editor y equipo editorial
Perfiles
Sociedad académica 
Universidad de Sucre
Editorial 
Universidad de Sucre

Detalles del artículo

Biografía del autor/a / Ver

Jesús Arturo Junco-Barranco, Center of Genetic Engineering and Biotechnology. Research-Development Department. Biomedical Research Group. Camagüey, Cuba.

Franklin Fuentes-Aguilar, Center of Genetic Engineering and Biotechnology. Research-Development Department. Biomedical Research Group. Camagüey, Cuba.

Lesvia Calzada-Aguilera, Center of Genetic Engineering and Biotechnology. Research-Development Department. Biomedical Research Group. Camagüey, Cuba.

 

 

Ana Claudia Bover Campal, Eduardo Agramonte Piña Children’s University Hospital. Immunology Department. Camagüey, Cuba

Referencias / Ver

Needham T, Lambrechts H, Hoffman LC. Castration of male livestock and the potential of immunocastration to improve animal welfare and production traits: Invited Review. S Afr J Anim Sci. 2017; 47(6):731-742. https://dx.doi.org/10.4314/sajas.v47i6.1 DOI: https://doi.org/10.4314/sajas.v47i6.1

Rault JL, Lay DC Jr., Marchant-Forde JN. Castration induced pain in pigs and other livestock. Appl Anim Behav Sci. 2011; 135:214-225. https://dx.doi.org/10.1016/j.applanim.2011.10.017 DOI: https://doi.org/10.1016/j.applanim.2011.10.017

Mallory DA, Nash JM, Ellersieck MR, Smith MF, Patterson DJ. Comparison of long-term progestin-based protocols to synchronize estrus before fixed-time artificial insemination in beef heifers. Anim. Sci. 2011; 89:1358–1365. https://dx.doi.org/10.2527/jas.2010-3694 DOI: https://doi.org/10.2527/jas.2010-3694

Báez G, Grajales H. Anestro post parto en ganado bovino en el trópico. Rev MVZ Cordoba. 2009; 14(3):1867-1875 https://doi.org/10.21897/rmvz.347 DOI: https://doi.org/10.21897/rmvz.347

ACC&D. Contraception and fertility control in dogs and cats: A report of the alliance for contraception in dogs and cats. 5. Marketing overview and issues. Alliance for Contraception in Cats & Dogs - ACC&D. 2013. https://www.acc-d.org/docs/default-source/Resource-Library-Docs/accd-e-book.pdf?sfvrsn=0

Candek–Potokar M, Skrlep M, Batorek Lukac N. Raising entire males or immunocastrates – outlook on meat quality. Procedia Food Sci. 2015; 5:30–33. https://doi.org/10.1016/j.profoo.2015.09.008 DOI: https://doi.org/10.1016/j.profoo.2015.09.008

European Commission. European declaration on alternatives to surgical castration of pigs. [Internet]. 2018. [access January 2019]. URL available at: https://ec.europa.eu/food/sites/food/files/animals/docs/aw_prac_farm_pigs_cast-alt_declaration_en.pdf

PIGCAS. Report on recommendations for research and policy support. Deliverable D4.1 of the EU project PIGCAS: attitude, practices and state of the art regarding piglet castration in Europe. [Internet]. Institut National De La Recherche Agronomique: Francia; 2009. URL available at: https://cordis.europa.eu/project/id/43969/de

Han X, Zhou Y, Zeng Y, Sui F, Liu Y, Tan Y, Cao X, Du X, Meng F, Zeng X. Effects of active immunization against GnRH versus surgical castration on hypothalamic-pituitary function in boars. Theriogenology. 2017; 97:89–97. https://doi.org/10.1016/j.theriogenology.2017.04.038 DOI: https://doi.org/10.1016/j.theriogenology.2017.04.038

Aluwé M, Vanhonacker F, Millet S, Tuyttens AM. Influence of hands-on experience on pig farmers’ attitude towards alternatives for surgical castration of male piglets. Res Vet Sci. 2015; 103:80-86. https://doi.org/10.1016/j.rvsc.2015.09.019 DOI: https://doi.org/10.1016/j.rvsc.2015.09.019

De Roest K, Montanari C, Fowler T, Baltussen, W. Resource efficiency and economic implications of alternatives to surgical castration without anaesthesia. Animal. 2009; 3(11):1522-1531. https://doi.org/10.1017/S1751731109990516 DOI: https://doi.org/10.1017/S1751731109990516

Meeusen ENT, Walker J, Peters A, Pastoret PP, Jungersen G. Current status of veterinary vaccines. Clin Microbiol Rev. 2007; 20(3):489–510. https://doi.org/10.1128/CMR.00005-07 DOI: https://doi.org/10.1128/CMR.00005-07

Gupta SK, Shrestha A, Minhas V. Milestones in contraceptive vaccines development and hurdles in their application. Hum Vaccin Immunother. 2014; 10(4):911-925. https://doi.org/10.4161/hv.27202 DOI: https://doi.org/10.4161/hv.27202

Gupta SK, Bhandari B, Shrestha A, Biswal BK, Palaniappan C, Malhotra SS, Gupta N. Mammalian zona pellucida glycoproteins: structure and function during fertilization. Cell Tissue Res. 2012; 349:665-678. https://doi.org/10.1007/s00441-011-1319-y DOI: https://doi.org/10.1007/s00441-011-1319-y

Bechert US, Fraker MA. Twenty Years of SpayVac® Research: Potential Implications for Regulating Feral Horse and Burro Populations in the United States. HUM-WILDL INTERACT. 2018; 12(1):Article13. https://doi.org/10.26077/q4yh-6m43

Roelle JE, Germanie SS, Kene AJ, Cade BS. Efficacy of SpayVac as a Contraceptive in Feral Horses. Wildl Soc Bull. 2017; 41(1):107–115. https://doi.org/10.1002/wsb.729 DOI: https://doi.org/10.1002/wsb.729

Rutberg AT, Naugle RE, Turner JW, Fraker MA, Flanagan DR. Field testing of single-administration porcine zona pellucida contraceptive vaccines in white-tailed deer (Odocoileus virginianus). Wildl Res. 2013; 40(4):281-288. https://doi.org/10.1071/WR12117 DOI: https://doi.org/10.1071/WR12117

Rutberg AK, Grams JW, Turner Jr, Hopkins H. Contraceptive efficacy of priming and boosting doses of controlled-release PZP in wild horses. Wildl Res. 2017; 44(2):174–181. https://doi.org/10.1071/WR16123 DOI: https://doi.org/10.1071/WR16123

Joonè CJ, Schulman ML and Bertschinger HJ. Ovarian dysfunction associated with zona pellucida-based immunocontraceptive vaccines. Theriogenology. 2017; 89:329-337. https://doi.org/10.1016/j.theriogenology.2016.09.018 DOI: https://doi.org/10.1016/j.theriogenology.2016.09.018

Mohammad I, Khilwani B, Ansari AS, Lohiya NK. Contraceptive vaccines: Implications in male and female fertility regulation. In: SK Gupta, NK Lohiya (ed). Molecular Medicine: Bench to bedside and beyond. First Edition. Indian Society for Study of Reproduction and Fertility; 2018.

Hampton JO, Hyndman TH, Barnes A, Collins T. Is Wildlife Fertility Control Always Humane? Animals. 2015; 5:1047-1071. https://doi.org/10.3390/ani5040398 DOI: https://doi.org/10.3390/ani5040398

Goldberg E, Shelton JA. Immunologic properties of LDH-C4 for contraceptive vaccine development. In: Zatuchni GI, Goldsmith A, Sciarra JJ, Spieler J (eds). Male Contraception Advances and Future Prospects. Harper and Row: Philadelphia; 1986.

Primakoff P, Lathrop W, Woolman L, Cowan A, Myles D. Fully effective contraception in male and female guinea pigs immunized with the sperm protein PH-20. Nature. 1988; 335:543-546. https://doi.org/10.1038/335543a0 DOI: https://doi.org/10.1038/335543a0

Naz RK, Alexander NJ, Isahakia M, Hamilton MD. Monoclonal antibody to a human sperm membrane glycoprotein that inhibits fertilization. Science. 1984; 225:342-344. https://doi.org/10.1126/science.6539947 DOI: https://doi.org/10.1126/science.6539947

Cheema R, Vashishat N, Bansal A, Bakhri G, Gandotra V. Immuno-contraceptive potential of sperm specific LDHC4 and SPAM-1 (PH-20) sub units in dog. Open J Anim Sci. 2012; 2:265-280. https://doi.org/10.4236/ojas.2012.24037 DOI: https://doi.org/10.4236/ojas.2012.24037

Cheema RS, Vashishat N, Bansal AK, Gandotra VK. Mutual interaction of dog sperm LDHC4, PH-20, actin and tubulin proteins and their immunocontraceptive potential in bitches. Indian J Anim Res. 2015; 49(4):461-469. https://doi.org/10.5958/0976-0555.2015.00040.0 DOI: https://doi.org/10.5958/0976-0555.2015.00040.0

Tollner T, Overstreet J, Branciforte D, Primakoff P. Immunization of female cynomolgus macaques with a synthetic epitope of sperm‐specific lactate dehydrogenase results in high antibody titers but does not reduce fertility. Mol Reprod Dev. 2002; 62:257-264. https://doi.org/10.1002/mrd.10063 DOI: https://doi.org/10.1002/mrd.10063

Moudgal NR, Jeyakumar M, Krishnamurthy HN, Sridhar S, Krishnamurthy H, Martín F. Development of male contraceptive vaccine— a perspective. Hum Reprod Update. 1997; 3(4):335–346. https://doi.org/10.1093/humupd/3.4.335 DOI: https://doi.org/10.1093/humupd/3.4.335

Cohoreau C, Klett D, Combarnous Y. Structure – function relationships of glycoproteins hormones and their subunits´ ancestors. Front Endocrinol (Lausanne). 2015; 6:26. https://doi.org/10.3389/fendo.2015.00026 DOI: https://doi.org/10.3389/fendo.2015.00026

Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet. 1997; 15:201–204. https://doi.org/10.1038/ng0297-201 DOI: https://doi.org/10.1038/ng0297-201

Yang L-H, Li J-T, Yan P, Liu H-L, Zeng S-Y, Wu Y-Z, et al. Follicle-stimulating hormone receptor (FSHR)-derived peptide vaccine induced infertility in mice without pathological effect on reproductive organs. Reprod Fertil Dev. 2011; 23:544-550. https://doi.org/10.1071/RD10142 DOI: https://doi.org/10.1071/RD10142

Maggi R. Physiology of gonadotropin-releasing hormone (GNRH): beyond the control of reproductive functions. MOJ Anat Physiol. 2016; 2(5):150‒154. https://doi.org/10.15406/mojap.2016.02.00063 DOI: https://doi.org/10.15406/mojap.2016.02.00063

Talwar P. Immunobiology of gonadotropin-releasing hormone. J Steroid Biochem Mol Biol. 1985; 23(5):795-800. https://doi.org/10.1016/s0022-4731(85)80016-9 DOI: https://doi.org/10.1016/S0022-4731(85)80016-9

Ferro VA, Stimson WH. Effects of adjuvant, dose and carrier pre-sensitization on the immunization efficacy of a GnRH analogue. Drug Des Discov. 1996; 14(3):179-195. https://www.ncbi.nlm.nih.gov/pubmed/9017362

Giri DK, Jayaraman S, Neelaram GS, Jayashankar R, Talwar GP. Prostatic hypoplasia in bonnet monkeys following immunization with semi synthetic anti-LHRH vaccine. Exp Mol Pathol. 1991; 54(3):255–264. https://doi.org/10.1016/0014-4800(91)90035-v DOI: https://doi.org/10.1016/0014-4800(91)90035-V

Hoskinson RM, Rigby RDG, Mattner PE, Huynh VL, D’Occhio M, Neish A, et al. Vaxstrate; An anti-reproductive vaccine for cattle. Aust J Biotechnol. 1990; 4(3):166-170. http://hdl.handle.net/102.100.100/255038?index=1

Zamaratskaia G, Krøyer Rasmussen M. Immunocastration of male pigs – situation today. International 58th Meat Industry Conference “Meat Safety and Quality: Where it goes?” Procedia Food Sci. 2015; 5:324–327. https://doi.org/10.1016/j.profoo.2015.09.064 DOI: https://doi.org/10.1016/j.profoo.2015.09.064

Hernández-García FI, Duarte JL, Pérez MA, Raboso C, del Rosario AI, Izquierdo M. Successful long-term pre-pubertal immunocastration of pure bred Iberian gilts reared in extensive systems. Acta Agric. Slov. 2013; (Suppl 4):123–126. http://aas.bf.uni-lj.si/zootehnika/supl/4-2013/PDF/4-2013-123-126.pdf

Dalmau A, Velarde A, Rodríguez P, Pedernera C, Lionch P, Fäbrega E, et al. Use of anti-GnRF vaccine to suppress estrus in cross - bred Iberian female pigs. Theriogenology. 2015; 84:342-347. https://doi.org/10.1016/j.theriogenology.2015.03.025 DOI: https://doi.org/10.1016/j.theriogenology.2015.03.025

Amatayakul - Chantler S, Hoe F, Jackson JA, Roca RO, Stegner JE, King V,et al. Effects on performance and carcass and meat quality attributes following immunocastration with the gonadotropin releasing factor vaccine Bopriva or surgical castration of Bos indicus bulls raised on pasture in Brazil. Meat Sci. 2013; 95(1):78–94. https://doi.org/10.1016/j.meatsci.2013.04.008 DOI: https://doi.org/10.1016/j.meatsci.2013.04.008

Amatayakul - Chantler S, Jackson JA, Stegner JE, King V, Rubio LMS, Howard R, et al. Immunocastration of Bos indicus × Brown Swiss bulls in feedlot with gonadotropin-releasing hormone vaccine Bopriva provides improved performance and meat quality. J Anim Sci. 2012; 90:3718–3728. https://doi.org/10.2527/jas.2011-4826 DOI: https://doi.org/10.2527/jas.2011-4826

Miller, Lowell A.; Rhyan, Jack; and Killian, Gary, GonaCon TM, a Versatile GnRH Contraceptive for a Large Variety of Pest Animal Problems. USDA National Wildlife Research Center - Staff Publications. 2004. https://digitalcommons.unl.edu/icwdm_usdanwrc/371

Ülker H, Yilmaz A, Karakuş F, Yörük, M, Budağ C, De Avila D, et al. LHRH Fusion Protein Immunization Alters Testicular Development, Ultrasonographic and Histological Appearance of Ram Testis. Reprod Domest Anim. 2009; 44:593-599. https://doi.org/10.1111/j.1439-0531.2007.01024.x DOI: https://doi.org/10.1111/j.1439-0531.2007.01024.x

Kiyma Z, Adams TE, Hess BW, Riley ML, Murdoch WJ, Moss GE. Gonadal function, sexual behaviour, feedlot performance, and carcass traits of ram lambs actively immunized against GnRH. J Anim Sci. 2000; 78(9):2237-2243. https://doi.org/10.2527/2000.7892237x DOI: https://doi.org/10.2527/2000.7892237x

Junco BJA, Reyes AO, Bover FEE, Fuentes AF, Pimentel VE, Basulto BR, et al. Pharmaceutical Composition Using Gonadotropin-Releasing Hormone (GNRH) Combined Variants as Immunogen. [Patent No. 9364524] International application published under the patent cooperation treaty (PCT). 2008. URL Available in: http://www.freepatentsonline.com/8999931.html

Fuentes F, Junco J, Calzada L, López Y, Pimentel E, Basulto Baker R, et al. Effect of a GnRH vaccine formulation on testosterone concentrations and reproduction in adult male rats. Biotecnol Apl. 2014; 31(3):222-227. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1027-28522014000300005&lng=es

Fuentes F, Junco JA, Bover E, Calzada L, López Y, Castro MD, Pimentel E, Basulto R, et al. Very Small Size Proteoliposomes (VSSP) and Montanide combination enhance the humoral immuno response in a GnRH based vaccine directed to prostate cancer. Vaccine. 2012; 30: 6595– 6599. https://doi.org/10.1016/j.vaccine.2012.08.020 DOI: https://doi.org/10.1016/j.vaccine.2012.08.020

Aguilar FF, Barranco JJ, Aguilera LC, Fuentes EB, Serradelo Leal JA, López EH, et al. The influence of different peptide combinations to increase the immunogenicity of the Gonadotrophin Releasing Hormone Vaccine for prostate cancer treatment. J Exp Ther Oncol. 2017; 12(2):87-94. https://europepmc.org/article/med/29161775 DOI: https://doi.org/10.3892/ol.2016.4679

Rosenfield DA, Schilbach Pizzuto C. Wildlife population control – reproductive physiology under the influence of contraceptive methods in mammalian wildlife, with emphasis on immunocontraception: the best choice? A literature review. Braz J Vet Res Anim Sci. 2018; 55(1):1-16. https://doi.org/10.11606/issn.16784456.bjvras.2018.129431 DOI: https://doi.org/10.11606/issn.1678-4456.bjvras.2018.129431

Ransom JI, Powers JG, Garbe HM, Oehler MW, Nett TM, Baker DL. Behavior of feral horses in response to culling and GnRH immunocontraception. Appl Anim Behav Sci. 2014; 157:81–92. https://doi.org/10.1016/j.applanim.2014.05.002 DOI: https://doi.org/10.1016/j.applanim.2014.05.002

Gupta S, Jain A, Chakraborty M, Sahni JK, Ali J, Dang S. Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Deliv. 2013; 20(6):237-246. https://doi.org/10.3109/10717544.2013.819611 DOI: https://doi.org/10.3109/10717544.2013.819611

Hajam IA, Dar PA, Won G, Lee JH. Bacterial ghosts as adjuvants: mechanisms and potential. Vet Res. 2017; 48(1):37. https://doi.org/10.1186/s13567-017-0442-5 DOI: https://doi.org/10.1186/s13567-017-0442-5

Varamini P, Rafiee A, Giddam AK, Mansfeld FM, Steyn F, Toth I. Development of New Gonadotropin-Releasing Hormone-Modified Dendrimer Platforms with Direct Antiproliferative and Gonadotropin Releasing Activity. J Med Chem. 2017. 60(20):8309-8320. https://doi.org/10.1021/acs.jmedchem.6b01771 DOI: https://doi.org/10.1021/acs.jmedchem.6b01771

Moradi SV, Hussein WM, Varamini P, Simerska P, Toth I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem Sci. 2016; 7:2492–2500. https://doi.org/10.1039/C5SC04392A DOI: https://doi.org/10.1039/C5SC04392A

Siel D, Vidal S, Carvallo F, Sevilla R, Lapierre L, Paredes R, et al. Effectiveness of an immunocastration vaccine formulation to reduce the gonadal function in female and male mice bTh1/Th2 immune response. Theriogenology. 2016; 86:1589-1598. http://dx.doi.org/10.1016/j.theriogenology.2016.05.019 DOI: https://doi.org/10.1016/j.theriogenology.2016.05.019

Sharma S, McDonald I, Miller L, Hinds LA. Parenteral administration of GnRH constructs and adjuvants: Immune responses and effects on reproductive tissues of male mice. Vaccine. 2014; 32:5555–5563. http://dx.doi.org/10.1016/j.vaccine.2014.07.075 DOI: https://doi.org/10.1016/j.vaccine.2014.07.075

Schaut RG, Brewer MT, Hostetter JM, Mendoza K, Vela - Ramírez JE, Kelly SM et al. A single dose polyanhydride-based vaccine platform promotes and maintains anti-GnRH antibody titers. Vaccine. 2018; 36:1016–1023. https://doi.org/10.1016/j.vaccine.2017.12.050 DOI: https://doi.org/10.1016/j.vaccine.2017.12.050

Cross ML, Zheng T, Duckworth JA, Cowan PE. Could recombinant technology facilitate the realization of a fertility-control vaccine for possums?. New Zeal J Zool. 2011; 38(1):91-111, https://doi.org/10.1080/03014223.2010.541468 DOI: https://doi.org/10.1080/03014223.2010.541468

Hay BA, Li J, Guo M. Vectored gene delivery for lifetime animal contraception: Overview and hurdles to implementation. Theriogenology. 2018; 112:63-74. https://doi.org/10.1016/j.theriogenology.2017.11.003 DOI: https://doi.org/10.1016/j.theriogenology.2017.11.003

Citado por

Citaciones

Crossref
Scopus
Europe PMC