The Evaluación de los parámetros ambientales de la casa de aves de corral enjaulada por batería en el clima tropical húmedo
The Evaluation of the environmental parameters of battery-caged poultry house in the humid tropical climate Avaliação dos parâmetros ambientais da caneta de camada com bateria no clima tropical úmido

Contenido principal del artículo


Ayoola Olawole Jongbo


El estrés por calor es un factor clave que afecta la producción de los animales. En aves ponedoras, puede causar pérdida de peso corporal y alta mortalidad. Con este fin, se realizó un estudio en una casa de capas enjaulada y ventilada naturalmente para evaluar los parámetros ambientales y el índice de estrés por calor dentro del edificio durante el período de clima cálido. A lo largo del estudio, se midieron y registraron los parámetros ambientales (temperatura del aire, humedad relativa y velocidad del aire), dentro y fuera del edificio experimental. También se calculó el índice de estrés por calor utilizando el índice de temperatura-humedad (THI). Los resultados del estudio indicaron que las aves ponedoras en este estudio estuvieron sometidas la mayor parte de su vida a condiciones de calor que podrían tener un efecto significativo en su desempeño. También se descubrió que la velocidad del aire dentro del edificio era muy baja (0.07ms-1 a 0.58ms-1) lo que no podía proporcionar un ambiente fresco para las aves. Se encontró que el índice de estrés por calor (THI) dentro del edificio de aves ponedoras está influenciado principalmente por la alta humedad relativa en comparación con la temperatura ambiente. Por lo tanto, sería apropiado evaluarse la distribución del flujo de aire dentro del edificio avícola, utilizando la dinámica de fluidos computacional para comprender el perfil de velocidad dentro del edificio. Esto podría ayudar a los ingenieros a rediseñar el edificio y hacerlo apropiado para poner aves en el clima tropical húmedo.

Palabras clave:

Detalles del artículo


1. FAO. Agribusiness Handbook- Poultry meat and eggs. FAO Agribusiness. 2010;65.

2. Mottet A, Tempio G. Global poultry production: Current state and future outlook and challenges. World’s Poultry Science Journal. 2017; 73(2):245–56.

3. Daghir NJ. Present status and future of the poultry industry in hot regions. In: Daghir NJ, editor. Poultry Production In Hot Climates. 2nd ed. Trowbridge, UK: CAB International; 2008.

4. Heise H, Crisan A, Theuvsen L. The poultry market in Nigeria: Market structures and potential for investment in the market. International Food and Agribusiness Management Review. 2015; 18(Specia lIssue A):197–222.

5. Sahel. An assessment of the Nigerian poultry sector. Vol. 11, Sahel Capital (Mauritius) Limited. Lagos, Nigeria; 2015.

6. Trading Economics. Nigeria Temperature. Trading Economics. 2019 [cited 2019 Nov 25].

7. Nmadu JN, Ogidan IO, Omolehin RA. Profitability and resource use efficiency of poultry egg production in Abuja, Nigeria. Kasetsart Journal - Social Sciences. 2014; 35(1):134–46.

8. Aboki E, Jongur AAU, Onu JI. Productivity and technical efficiency of family poultry production in Kurmi Local Government Area of Taraba State, Nigeria. Journal of Agriculture and Sustainability. 2018; 4(1):52–66.

9. Afolabi OI, Adegbite DA, Ashaolu OF, Akinbode SO. Profitability and resource-use efficiency in poultry egg farming in Ogun State, Nigeria. African Journal of Business Management. 2013; 7(16):1536–1540.

10. Tijjani H, Tijani BA, Tijjani AN, Sadiq MA. Economic analysis of poultry egg production in Maiduguri and environs of Borno State, Nigeria. Scholarly Journal of Agricultural Science [Internet]. 2012; 2(12):319–324.

11. Adeyemo AA, Onikoyi MP. Prospects and challenges of large scale commercial poultry production in Nigeria. Agricultural Journal. 2012; 7(6):388–393.

12. Ezeh CI, Anyiro CO, Chukwu JA. Technical efficiency in poultry broiler production in Umuahia Capital Territory of Abia State , Nigeria. Greener Journal of Agricultural Sciences. 2012; 2(1):1–7.

13. Fontana I, Tullo E, Butterworth A, Guarino M. Broiler Vocalisation to Predict the Growth. In: Proceedings of Measuring Behaviour, Wageningen, The Netherlands. 2014.,%20I.%20-%20MB2014.pdf

14. Ismayilova G. The use of image labelling to identify pig behaviours for the development of a real-time monitoring and control tool. University of Milan; 2013.

15. Chaiyabutr N. Physiological reactions of poultry to heat stress and methods to reduce its effects on poultry production. Thai J Vet Med. 2004; 34(2):17–30.

16. Ayo JO, Obidi JA, Rekwot PI. Effects of heat stress on the well-being, fertility, and hatchability of chickens in the Northern Guinea Savannah Zone of Nigeria: A review. ISRN Veterinary Science. 2011; 2011:1–10.

17. Blanes-Vidal V, Fitas V, Torres A. Differential pressure as a control parameter for ventilation in poultry houses: Effect on air velocity in the zone occupied by animals. Spanish Journal of Agricultural Research. 2007; 5(1):31–37.

18. Vale M, Moura D, Nääs I, Pereira D. Characterization of heat waves affecting mortality rates of broilers between 29 days and market age. Revista Brasileira de Ciência Avícola. 2010; 12(4):279–85.

19. Duduyemi OA, Oseni S. Modelling heat stress characteristics on layers’ performance traits in southwestern Nigeria. Obafemi Awolowo University; 2012.

20. Kapetanov M, Pajić M, Ljubojević D, Pelić M. Heat stress in poultry industry. Archives of Veterinary Medicine. 2015; 8(2):87–101.

21. Behura NC, Kumar F, Samal L, Sethy K, Behera K. Use of Temperature-Humidity Index ( THI ) in energy modeling for broiler breeder pullets in hot and humid climatic conditions. Journal of Livestock Science. 2016; 7:75–83.

22. Rojano F, Bournet P-E, Hassouna M, Robin P, Kacira M, Choi CY. Assessment using CFD of the wind direction on the air discharges caused by natural ventilation of a poultry house. Environmental Monitoring and Assessment. 2018; 190(12):724.

23. Samal L, Sejian V, Bagath M, Krishnan G, Manimaran A, Bhatta R. Different heat stress indices to quantify stress response in livestock and poultry. In: Rao P, editor. Livestock Meteorology. New Delhi, India: New India Publishing Agency; 2017.

24. Habeeb AA, Gad AE, Atta MA. Temperature-humidity indices as indicators to heat stress of climatic conditions with relation to production and reproduction of farm animals. International Journal of Biometeorology and Recent Advances. 2018; 1(1):35–50.

25. Lallo CHO, Cohen J, Rankine D, Taylor M, Cambell J, Stephenson T. Characterizing heat stress on livestock using the temperature humidity index ( THI ) — prospects for a warmer Caribbean. Regional Environmental Change. 2018; 18:2329–2340.

26. Chang Y, Wang XJ, Feng JH, Zhang MH, Diao HJ, Zhang SS, et al. Real-time variations in body temperature of laying hens with increasing ambient temperature at different relative humidity levels. Poultry Science. 2018; 97:3119–3125.

27. Zhu W-L, Mu Y, Zhang L, Wang Z. Effect of temperature on body temperature and resting metabolic rate in pups of Eothenomys miletus. Journal of Stress Physiology & Biochemistry. 2013; 9(1):148–156.

28. Yoshida N, Fujita M, Nakahara M, Kuwahara T, Kawakami SI, Bungo T. Effect of high environmental temperature on egg production, serum lipoproteins and follicle steroid hormones in laying hens. Journal of Poultry Science. 2011; 48(3):207–211.

29. Olczak K, Nowicki J, Klocek C. Pig behaviour in relation to weather conditions - A review. Annals of Animal Science. 2015; 15(3):601–610.

30. Nilius G, Domanski U, Schroeder M, Woehrle H, Graml A, Franke KJ. Mask humidity during CPAP: Influence of ambient temperature, heated humidification and heated tubing. Nature and Science of Sleep. 2018; 10:135–42.

31. Jones DD, Friday WH, Deforest SS. Environmental control for confinement livestock housing. Historical Documents of the Purdue Cooperative Extension Service. 2015; (Paper 1083).

32. Okpara MO, Egbu CF, Ani AO. Effect of relative humidity on the performance of Nera Black hens in a humid tropical environment. Journal of Agriculture and Ecology Research International. 2016; 9(1):1–5.

33. Kavolelis B, Bleizgys R, Česna J. Natural ventilation of animal sheds due to thermal buoyancy and wind. Journal of Environmental Engineering and Landscape Management. 2008; 16(4):188–94.

34. Raymond C, Singh D, Horton RM. Spatiotemporal Patterns and Synoptics of Extreme Wet-Bulb Temperature in the Contiguous United States. Journal of Geophysical Research: Atmospheres. 2017; 122(24):108-113.

35. Sherwood SC. How Important Is Humidity in Heat Stress? Journal of Geophysical Research: Atmospheres. 2018; 123(21):808-810.


La descarga de datos todavía no está disponible.