La prueba de progenie de toros Friesian para las características de la leche mediante el uso del método de comparación contemporáneo
The Progeny test of Friesian sires for milk traits by using the contemporary comparison method

Contenido principal del artículo

Autores

Omar R Mardenli https://orcid.org/0000-0002-6092-7604

Resumen

Se utilizó el método de comparación contemporáneo (CC) de la relación de medio hermanos para estimar los valores genéticos de los toros Holstein-Friesian para 305días de producción de leche (305-DMY) y componentes básicos de las características de la leche, 409 registros de vacas. que son hijas de diez toros en ocho granjas lecheras sirias donde se utilizaron. El resultado del estudio mostró diferencias en los valores genéticos estimados (ccEBVs), donde el E Sire alcanzó el valor más alto del rasgo 305-DMY (254,47 kg), mientras que el B Sire alcanzó el mayor valor de porcentaje de proteína de la leche (MPP), leche rasgos de porcentaje de grasa (MFP) y porcentaje de lactosa de la leche (MLP) (0.822%, 0.857% y 1.09% respectivamente). De acuerdo con sus toros, las hijas de E Sire superaron a sus contrapartes en los rasgos 305-DMY (p=0.001), MPP (p=0.001) y MFP (p=0.04) (5701.44 kg, 3.55% y 3.88% respectivamente). Según la fuente de la finca, las hijas de la Finca 5 alcanzaron el valor más alto del rasgo 305-DMY (p= 0.04) y las hijas de la séptima finca lograron el valor más alto del rasgo MPP (p=0.007), los valores fueron 5403.48kg y 3.54% respectivamente. Los valores de heredabilidad (h2) para los rasgos de 305-DMY, MPP, MFP y MLP fueron 0.33, 0.54, 0.43 y 0.47 respectivamente. La mayoría de los coeficientes de correlación genéticos y fenotípicos se acercaban a cero, excepto la relación genética entre MLP y MPP y la relación fenotípica entre MFP y MPP (0,88 y 0,84 respectivamente).


 

Palabras clave:

Detalles del artículo

Referencias

1. Renand G. Genetic parameters of French beef breeds used in crossbreeding for young bull production. II - Slaughter performance, Genet. Sel. Evol. 1985; 17(2):265-282. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713923/

2. Robertson A, Stewart A, Ashton ED. The progeny assessment of dairy sires for milk: The use of contemporary comparisons. Proc Br Soc Anim Prod. 1956; 43–50. https://doi.org/10.1017/S0369852100001688

3. Henderson CR, Carter HW, Godfrey JT. Use of the contemporary average in appraising progeny test of dairy bulls. J Anim Sci. 1954; 12:949. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1031&context=wcgalp

4. Weigel KA, VanRaden PM, Norman HD, Grosu H. A 100-Year Review: Methods and impact of genetic selection in dairy cattle -From daughter- dam comparisons to deep learning algorithms. J Dairy Sci. 2017; 100(12):10234-10250. https://doi.org/10.3168/jds.2017-12954

5. Robison OW, Mcdaniel BT, Rincon EJ. Estimation of direct and maternal additive and heterotic effects from crossbreeding experiments in animals. J Anim Sci. 1981; 52(1):44–50. https://doi.org/10.2527/jas1981.52144x

6. Thorpe W, Kangethe P, Rege JEO, Mosi RO, Mwandotto BAJ, Njuguna P. Crossbreeding Ayrshire, Friesian and Sahiwal cattle for milk yield and preweaning traits of progeny in the semiarid tropics of Kenya. J Dairy Sci. 1993; 76(7): 2001–2012. https://doi.org/10.3168/jds.S0022-0302(93)77534-7

7. Sneddon NW, Lopez-Villalobos N, Hickson RE, Shalloo L. Genetic parameters for lactose and its relationship with concentrations and ratios of other milk components. Proceedings of the New Zealand Society of Animal Production. 2012; 72:76–80. http://www.nzsap.org/system/files/proceedings/2012/ab12018.pdf

8. Roman RM, Wilcox CJ, Littell RC. Genetic trends for milk yield of Jerseys and correlated changes in productive and reproductive performance. J Dairy Sci. 1999; 82:196–204. https://www.nrcresearchpress.com/d voi/pdfplus/10.4141/cjas79-024

9. Roman RM, Wilcox CJ. Bivariate animal model estimates of genetic, phenotypic, and environmental correlations for production, reproduction, and somatic cell in Jerseys. J Dairy Sci. 2000; 83:829–835. https://www.sciencedirect.com/science/article/pii/S0022030200749460

10. Johnson DL, Petch SF, Winkelman AM, Bryant M. Genetics of milk characteristics in New Zealand dairy cattle. Proceedings of the New Zealand Society of Animal Production. 2000; 60:318–319. http://www.nzsap.org/proceedings/2000/genetics-milk-characteristics-new-zealand-dairy-cattle

11. Pryce JE, Harris BL. Genetics of body condition score in New Zealand dairy cows. J Dairy Sci. 2006. 89:4424–4432. https://www.journalofdairyscience.org/article/S0022-0302(06)72490-0/fulltext

12. Miglior F, Sewalem A, Jamrozik J, Bohmanova J, Lefebvre DM, Moore RK. Genetic analysis of milk urea nitrogen and lactose and their relationships with other production traits in Canadian Holstein cattle. J Dairy Sci. 2007; 90: 2468–2479. https://www.ncbi.nlm.nih.gov/pubmed/17430951

13. Amasaib EO, Mohamed HE, Fadel Elseed AN. Lactation Length and Lactation Milk Yield in Cattle in Sudan. J Dairy Sci. 2008; 2(1):1-4. http://medwelljournals.com/abstract/?doi=rjdsci.2008.1.4

14. Bratt G. Milk Kontorllen 1984-1985. New Progress. Kontorllen 1984-1985 Nya framsteg. Husdjur (1985). No. 10:7-10 (SV) SHS. Hollsta. Sweden Anim Breed Abstr. 1985; 54:208.

15. Ditton T. Federation of UK milk marketing Boards. UK dairy facts and figures, xiii. Anim Breed Abst. 1985; 54:210.

16. Van Vleck LD, Henderson CR. Ratio factors for adjusting monthly test-day data for age and season of calving and ratio factors for extending part lactation records. J Dairy Sci. 1961; 44:1093–1101. https://www.journalofdairyscience.org/article/S0022-0302(61)89860-3/abstract

17. Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research. 2nd Edition, John Wiley and Sons, New York. 1984 https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=2253909

18. SAS.SAS/STAT Users Guide for Personal Computers Release 9. 2.SAS. Institute Inc., Cary, NC., USA: 2004. https://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/ets_ug_7314.pdf

19. Buckley, F., Sullivan, K. O, Mee, J. F., Evans, R. D., Dillon, P. 2003. Relationships among milk yield, body condition, cow weight and reproduction in spring-calved Holstein-Friesians. J Dairy Sci. 86(7):2308–2319. https://www.journalofdairyscience.org/article/S0022-0302(03)73823-5/fulltext

20. Pritchard T, Coffey M, Mrode R, Wall E. Genetic parameters for production, health, fertility and longevity traits in dairy cows. J Dairy Sci. 2013; 7(1):34–46. https://www.ncbi.nlm.nih.gov/pubmed/23031504

21. Calus MPL, Carrick MJ, Veerkamp RF, Goddard ME. Estimation of genetic parameters for milk fat depression in dairy cattle. J Dairy Sci. 2005; 88:1166-1177. https://www.sciencedirect.com/science/article/pii/S0022030205727831

22. Gorjanc G, Malovrh S, Logar B, Kovac M. Fixed effects for 305-day lactation milk traits in cattle. Zbornik Biotehniške Fakultete Univerze V Ljubljani Kmetijstvo Supliment. 2001; 31, 301-307. https://www.scribd.com/document/2551877/Fixed-effects-for-305-day-lactation-milk-traits-in-cattle

23. Welper RD, Freeman AE. Genetic parameters for yield traits of Holsteins, including lactose and somatic cell score. J Dairy Sci. 1992. 75:1342–1348. https://www.sciencedirect.com/science/article/pii/S0022030292778850

24. Fox PF, Morrissey PA. Review of the progress of dairy science: the heat stability of milk. J Dairy Res. 1977; 44:627. https://www.cambridge.org/core/journals/journal-of-dairy- research/article/heat-stability-of- milk

25. Ng-Kwai-Hang KF, Hayes JF, Moxley JE, Monardes HG. Environmental influences on protein content and composition of bovine milk. J Dairy Sci; 1982; 65:1993. https://www.ncbi.nlm.nih.gov/pubmed/6890960

26. Migose SA, Magothe TM, Muasya TK, Ilatsia EDA, Kahi K. Milk production and reproductive performance of Bos Taurus dairy breeds in Kenya. In: Proceedings of the 32nd Scientific Conference of the Tanzania Society of Animal Production. 2006. 32:184-190.

27. Liesbeth VW. Textbook Animal Breeding and Genetics for BSc students. Centre for Genetic Resources the Netherlands and Animal Breeding and Genomics Centre, Groen 2015. https://www.wur.nl/upload_mm/d/b/b/614bcc19-036f-434e-9d40-609364ab26da _Textbook%20Animal%20Breeding%20and%20Genetics-v17-20151122_1057.pdf

28. Cardoso VL, Pereira Lima ML, Nogueira JR, de Carneiro RLR, Sesana RC, Oliveira EJ, Faro LE. Economic values for milk production and quality traits in south and southeast regions of Brazil. R Bras Zootec. 2014; 43(12):636-642. https://doi.org/10.1590/S1516-35982014001200002

Descargas

La descarga de datos todavía no está disponible.