El sueño: fisiología y homeostasis

The sleep: Physiology and homeostasis

Contenido principal del artículo

Dora Nancy Padilla-Gil


Todos los animales disponen de mecanismos fisiológicos y homeostáticos para generar, mantener, ajustar y sincronizar los ciclos endógenos/exógenos del sueño. Varias áreas del cerebro intervienen en la activación y regulación de los ciclos sueño/vigilia y su sincronía con el ciclo luz/oscuridad. Toda esta actividad fisiológica está incluida en el reloj biológico (o ritmo circadiano) de cada animal, el cual está modulado por genes, proteínas, y neurotransmisores. El sueño se relaciona con los procesos de recuperación o reparación, mantenimiento y restauración de la eficacia de todos los sistemas del organismo, principalmente de los sistemas nervioso, endocrino e inmunológico. Dada la importancia del sueño tanto para los animales como para los humanos, esta revisión presenta una reseña sobre la fisiología y homeostasis del sueño, documentada a través de bibliografía científica publicada en los últimos cinco años (2017-2022), en revistas científicas como Science y Nature, de las bases de datos PubMed, Science Direct, o clasificadas en Scimago. El sueño está regulado por factores exógenos y endógenos, en estos últimos son actores principales los neurotransmisores (serotonina, histamina), neuromoduladores (noradrenalina), hormonas (sistema orexina/hipocretina, melatonina), el sistema glinfático y los genes que activan las diferentes vías de señalización para que funcione en forma óptima las neuronas y la glía del encéfalo.

Palabras clave:


Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Siegel JM. Clues to the functions of mammalian sleep. Nature. 2005; 437(7063):1264–1271. https://doi.org/10.1038/nature04285

Yadav A, Kumar R, Tiwari J, Kumar V, Rani S. Sleep in birds: Lying on the continuum of activity and rest. Biol Rhythm Res. 2017; 48(5):805–814. https://doi.org/10.1080/09291016.2017.1346850

Van der Auwera P, Frooninckx L, Buscemi K, Vance RT, Watteyne J, Mirabeau O, et al. RPamide neuropeptides NLP-22 and NLP-2 act through GnRH-like receptors to promote sleep and wakefulness in C. elegans. Sci Rep. 2020; 10(1):9929. https://doi.org/10.1038/s41598-020-66536-2

Helfrich-Förster C. Sleep in Insects. Ann Rev Entomol. 2018; 63(1):69–86. https://doi.org/10.1146/annurev-ento-020117-043201

Navarro-Sanchis C, Brock O, Winsky-Sommerer R, Thuret S. Modulation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health. Front Neural Circuits. 2017; 11(74). https://doi.org/10.3389/fncir.2017.00074

Spence AR, LeWinter H, Tingley MW. Anna’s hummingbird (Calypte anna) physiological response to novel thermal and hypoxic conditions at high elevations. J Exp Biol. 2022; 225(10):jeb243294. https://doi.org/10.1242/jeb.243294

Krüger K, Prinzinger R, Schuchmann KL. Torpor and metabolism in hummingbirds. Comp Biochem Physiol Part A: Physiol. 1982; 73(4):679–689. https://doi.org/10.1016/0300-9629(82)90275-4

Shankar A, Schroeder RJ, Wethington SM, Graham CH, Powers DR. Hummingbird torpor in context: Duration, more than temperature, is the key to nighttime energy savings. J Avian Biol. 2020; 51(5):jav.02305. https://doi.org/10.1111/jav.02305

Wolf BO, McKechnie AE, Schmitt CJ, Czenze ZJ, Johnson AB, Witt CC. Extreme and variable torpor among high-elevation Andean hummingbird species. Biol Lett. 2020; 16(9):20200428. https://doi.org/10.1098/rsbl.2020.0428

Nagai H, de Vivo L, Marshall W, Tononi G, Cirelli C. Effects of Severe Sleep Disruption on the Synaptic Ultrastructure of Young Mice. eNeuro. 2021; 8(4):0077. https://doi.org/10.1523/ENEURO.0077-21.2021

Aulsebrook AE, Johnsson RD, Lesku JA. Light, Sleep and Performance in Diurnal Birds. Clocks & Sleep. 2021; 3(1):115–131. https://doi.org/10.3390/clockssleep3010008

Johnsson RD, Connelly F, Gaviraghi Mussoi J, Vyssotski AL, Cain KE, Roth TC, et al. Sleep loss impairs cognitive performance and alters song output in Australian magpies. Sci Rep. 2022; 12(1):6645. https://doi.org/10.1038/s41598-022-10162-7

Hahn MA, Heib D, Schabus M, Hoedlmoser K, Helfrich RF. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. ELife. 2020; 9:e53730. https://doi.org/10.7554/eLife.53730

Hahn MA, Bothe K, Heib D, Schabus M, Helfrich RF, Hoedlmoser K. Slow oscillation–spindle coupling strength predicts real-life gross-motor learning in adolescents and adults. ELife. 2022; 11:e66761. https://doi.org/10.7554/eLife.66761

Alrousan G, Hassan A, Pillai AA, Atrooz F, Salim S. Early Life Sleep Deprivation and Brain Development: Insights From Human and Animal Studies. Front Neurosci. 2022; 16:833786. https://doi.org/10.3389/fnins.2022.833786

Hernandez-Reif M, Gungordu N. Infant sleep behaviors relate to their later cognitive and language abilities and morning cortisol stress hormone levels. Infant Behav Dev. 2022; 67:101700. https://doi.org/10.1016/j.infbeh.2022.101700

Schlieber M, Han J. The Role of Sleep in Young Children’s Development: A Review. J Genet Psychol. 2021; 182(4):205–217. https://doi.org/10.1080/00221325.2021.1908218

Campbell SS, Tobler I. Animal sleep: A review of sleep duration across phylogeny. Neurosci Biobehav Rev. 1984; 8(3):269–300. https://doi.org/10.1016/0149-7634(84)90054-X

Klein K, Busby MK. Slumber in a cell: honeycomb used by honeybees for food, brood, heating and sleeping. PeerJ. 2020; 8:e9583 https://doi.org/7717/peerj.9583

Samson DR, Vining A, Nunn CL. Sleep influences cognitive performance in lemurs. Anim Cogn. 2019; 22(5):697–706. https://doi.org/10.1007/s10071-019-01266-1

Geissmann Q, Beckwith EJ, Gilestro GF. Most sleep does not serve a vital function: Evidence from Drosophila melanogaster. Sci Adv. 2019; 5(2):9253. https://doi.org/10.1126/sciadv.aau9253

Brown RE, Spratt TJ, Kaplan GB. Translational approaches to influence sleep and arousal. Brain Res Bull. 2022; 185:140–161. https://doi.org/10.1016/j.brainresbull.2022.05.002

Fernandez-Chiappe F, Hermann-Luibl C, Peteranderl A, Reinhard N, Senthilan PR, Hieke M, et al. Dopamine Signaling in Wake-Promoting Clock Neurons Is Not Required for the Normal Regulation of Sleep in Drosophila. J. Neurosci. 2020;40(50):9617–9633. https://doi.org/10.1523/jneurosci.1488-20.2020

Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Sci. 2019; 366(6465):628–631. https://doi.org/10.1126/science.aax5440

Guo D, Thomas RJ, Liu Y, Shea SA, Lu J, Peng CK. Slow wave synchronization and sleep state transitions. Sci Rep. 2022; 12(1):7467. https://doi.org/10.1038/s41598-022-11513-0

Norimoto H, Fenk LA, Li HH, Tosches MA, Gallego-Flores T, Hain D, et al. A claustrum in reptiles and its role in slow-wave sleep. Nature. 2020; 578(7795):413–418. https://doi.org/10.1038/s41586-020-1993-6

Bandarabadi M, Herrera CG, Gent TC, Bassetti C, Schindler K, Adamantidis AR. A role for spindles in the onset of rapid eye movement sleep. Nat Commun. 2020; 11(1):5247. https://doi.org/10.1038/s41467-020-19076-2

Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin Knockout Mice. Cell. 1999; 98(4):437–451. https://doi.org/10.1016/S0092-8674(00)81973-X

Gazerani P. Nightmares in Migraine: A Focused Review. Behav Sci. 2021; 11(9):122. https://doi.org/10.3390/bs11090122

Nitzan N, Swanson R, Schmitz D, Buzsáki G. Brain-wide interactions during hippocampal sharp wave ripples. Proc Natl Acad Sci. 2022; 119(20):e2200931119. https://doi.org/10.1073/pnas.2200931119

Salehpour F, Khademi M, Bragin DE, DiDuro JO. Photobiomodulation Therapy and the Glymphatic System: Promising Applications for Augmenting the Brain Lymphatic Drainage System. Int J Mol Sci. 2022; 23(6):2975. https://doi.org/10.3390/ijms23062975

Russell JK, Bubser M, Newhouse PA, Lindsley CW, Jones CK. Age and circadian rhythm-dependent effects of M1 muscarinic acetylcholine receptor positive allosteric modulators and donepezil on sleep-wake architecture and arousal. Alzheimers Dement. 2021; 17(S9). https://doi.org/10.1002/alz.057851

Schneider J, Lewis PA, Koester D, Born J, Ngo HVV. Susceptibility to auditory closed-loop stimulation of sleep slow oscillations changes with age. Sleep. 2020; 43(12):zsaa111. https://doi.org/10.1093/sleep/zsaa111

Vanderlinden J, Boen F, Puyenbroeck SV, van Uffelen JGZ. The effects of a real-life lifestyle program on physical activity and objective and subjective sleep in adults aged 55+ years. BMC Public Health. 2022; 22(1):353. https://doi.org/10.1186/s12889-022-12780-210.1016/j.bcp.2021.114438

Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. Sleep and circadian rhythms in Parkinson’s disease and preclinical models. Mol Neurodegener. 2022; 17(1):2. https://doi.org/10.1186/s13024-021-00504-w

Van der Meij J, Martinez-Gonzalez D, Beckers GJL, Rattenborg NC. Neurophysiology of avian sleep: comparing natural sleep and isoflurane anesthesia. Front Neurosci. 2019; 13:262. https://doi.org/10.3389/fnins. 2019.00262

Yadav A, Tiwari J, Vaish V, Malik S, Rani S. Migration gives sleepless nights to the birds: A study on a Palearctic–Indian migrant, Emberiza bruniceps. J Ornithol. 2021; 162(1):77–87. https://doi.org/10.1007/s10336-020-01829-x

Kendall-Bar JM, Vyssotski AL, Mukhametov LM, Siegel JM, Lyamin OI. Eye state asymmetry during aquatic unihemispheric slow wave sleep in northern fur seals (Callorhinus ursinus). PloS one. 2019; 14(5):e0217025. https://doi.org/10.1371/journal.pone.0217025

Lyamin OI, Mukhametov LM, Siegel JM. Sleep in the northern fur seal. Curr Opin Neurobiol. 2017; 44:144–151. https://doi.org/10.1016/j.conb.2017.04.009

Medeiros SL de S, Paiva MMM de, Lopes PH, Blanco W, Lima FD de, Oliveira JBC, et al. Cyclic alternation of quiet and active sleep states in the octopus. iScience. 2021; 24(4):102223. https://doi.org/10.1016/j.isci.2021.102223

Carús-Cadavieco M, De Andrés I. Adenosina y control homeostático del sueño. Acciones en estructuras diana de los circuitos de vigilia y sueño. Rev Neurol. 2012; 55:413–420. https://neurologia.com/articulo/2012258

Mignot E, Zeitzer J, Pizza F, Plazzi G. Sleep Problems in Narcolepsy and the Role of Hypocretin/Orexin Deficiency. En: Steiner MA, Yanagisawa M, Clozel M, editors. Front Neurol Neurosci. S. Karger AG. 2021; 45:103–116. https://doi.org/10.1159/000514959

Wu MF, John J, Maidment N, Lam HA, Siegel JM. Hypocretin release in normal and narcoleptic dogs after food and sleep deprivation, eating, and movement. Am J Physiol Regul Integr Comp Physiol. 2002; 283(5):1079–1086. https://doi.org/10.1152/ajpregu.00207.2002

Zhao P, You Y, Wang Z, Zhou Y, Chai G, Yan G, et al. Orexin A peptidergic system: Comparative sleep behavior, morphology and population in brains between wild type and Alzheimer’s disease mice. Brain Struct Funct. 2022; 227(3):1051–1065. https://doi.org/10.1007/s00429-021-02447-w

Jacobson LH, Hoyer D, Lecea L. Hypocretins (orexins): The ultimate translational neuropeptides. J Intern Med. 2022; 291(5):533–556. https://doi.org/10.1111/joim.13406

Shen YC, Sun X, Li L, Zhang HY, Huang ZL, Wang YQ. Roles of Neuropeptides in Sleep–Wake Regulation. Int J Mol Sci. 2022; 23(9):4599. https://doi.org/10.3390/ijms23094599

Jaggard JB, Stahl BA, Lloyd E, Prober DA, Duboue ER, Keene AC. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. ELife. 2018; 7:e32637. https://doi.org/10.7554/eLife.32637

McGaugh SE, Passow CN, Jaggard JB, Stahl BA, Keene AC. Unique transcriptional signatures of sleep loss across independently evolved cavefish populations. J Exp Zool B Mol. 2020; 334(7–8):497–510. https://doi.org/10.1002/jez.b.22949

Anghel L, Baroiu L, Popazu C, Pătraș D, Fotea S, Nechifor A, et al. Benefits and adverse events of melatonin use in the elderly (Review). Exp Ther Med. 2022; 23(3):219. https://doi.org/10.3892/etm.2022.11142

Lalanne S, Fougerou-Leurent C, Anderson GM, Schroder CM, Nir T, Chokron S, et al. Melatonin: From Pharmacokinetics to Clinical Use in Autism Spectrum Disorder. Int J Mol Sci. 2021; 22(3):1490. https://doi.org/10.3390/ijms22031490

Niu L, Li Y, Zong P, Liu P, Shui Y, Chen B, et al. Melatonin promotes sleep by activating the BK channel in C. elegans. Proc Natl Acad Sci. 2020; 117(40):25128–25137. https://doi.org/10.1073/pnas.2010928117

Fowler S, Hoedt EC, Talley NJ, Keely S, Burns GL. Circadian Rhythms and Melatonin Metabolism in Patients With Disorders of Gut-Brain Interactions. Front Neurosci. 2022; 16:825246. https://doi.org/10.3389/fnins.2022.825246

Parks CL, Robinson PS, Sibille E, Shenk T, Toth M. Increased anxiety of mice lacking the serotonin 1A receptor. Proc Natl Acad Sci. 1998; 95(18):10734–10739. https://doi.org/10.1073/pnas.95.18.10734

Quintero-Villegas A, Valdés-Ferrer SI. Role of 5-HT7 receptors in the immune system in health and disease. Mol Med. 2020; 26(1):2. https://doi.org/10.1186/s10020-019-0126-x

Lee DA, Oikonomou G, Cammidge T, Andreev A, Hong Y, Hurley H, et al. Neuropeptide VF neurons promote sleep via the serotonergic raphe. ELife. 2020; 9:e54491. https://doi.org/10.7554/eLife.54491

Wang S, Wang Z, Mu Y. Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sci. 2022; 12(2):134. https://doi.org/10.3390/brainsci12020134

Manger PR, Eschenko O. The Mammalian Locus Coeruleus Complex-Consistencies and Variances in Nuclear Organization. Brain Sci. 2021; 11(11):1486. https://doi.org/10.3390/brainsci11111486

Osorio-Forero A, Cherrad N, Banterle L, Fernandez LMJ, Lüthi A. When the Locus Coeruleus Speaks Up in Sleep: Recent Insights, Emerging Perspectives. Int J Mol Sci. 2022; 23(9):5028. https://doi.org/10.3390/ijms23095028

Ashton A, Jagannath A. Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling. Front Neurosci. 2020; 14:636. https://doi.org/10.3389/fnins.2020.00636

Hasegawa E, Miyasaka A, Sakurai K, Cherasse Y, Li Y, Sakurai T. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Sci. 2022; 375(6584):994–1000. https://doi.org/10.1126/science.abl6618

Takács VT, Cserép C, Schlingloff D, Pósfai B, Szőnyi A, Sos KE, et al. Co-transmission of acetylcholine and GABA regulates hippocampal states. Nat Commun. 2018; 9(1):2848. https://doi.org/10.1038/s41467-018-05136-1

Inayat S, Qandeel, Nazariahangarkolaee M, Singh S, McNaughton BL, Whishaw IQ, et al. Low acetylcholine during early sleep is important for motor memory consolidation. Sleep. 2020; 43(6):zsz297. https://doi.org/10.1093/sleep/zsz297

Czarnecki P, Lin J, Aton SJ, Zochowski M. Dynamical Mechanism Underlying Scale-Free Network Reorganization in Low Acetylcholine States Corresponding to Slow Wave Sleep. Front Netw Physiol. 2021;1:759131. https://doi.org/10.3389/fnetp.2021.759131

Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci. 2021; 15:680214. https://doi.org/10.3389/fnins.2021.680214

Nakamura T, Naganuma F, Kudomi U, Roh S, Yanai K, Yoshikawa T. Oral histidine intake improves working memory through the activation of histaminergic nervous system in mice. Biochem Biophys Res Commun. 2022; 609:141–148. https://doi.org/10.1016/j.bbrc.2022.04.016

Yoshikawa T, Nakamura T, Yanai K. Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br J Pharmacol. 2021; 178(4):750–769. https://doi.org/10.1111/bph.15220

Hablitz LM, Nedergaard M. The Glymphatic System: A Novel Component of Fundamental Neurobiology. J Neurosci. 2021; 41(37):7698–7711. https://doi.org/10.1523/JNEUROSCI.0619-21.2021

Reddy OC, van der Werf YD. The Sleeping Brain: Harnessing the Power of the Glymphatic System through Lifestyle Choices. Brain Sci. 2020; 10(11):868. https://doi.org/10.3390/brainsci10110868

Sun A, Wang J. Choroid Plexus and Drug Removal Mechanisms. AAPS J. 2021; 23(3):61. https://doi.org/10.1208/s12248-021-00587-9

Hablitz LM, Plá V, Giannetto M, Vinitsky HS, Stæger FF, Metcalfe T, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun. 2020; 11(1):4411. https://doi.org/10.1038/s41467-020-18115-2

Picchioni D, Özbay PS, Mandelkow H, de Zwart JA, Wang Y, van Gelderen P, et al. Autonomic arousals contribute to brain fluid pulsations during sleep. Neuroimage. 2022; 249:118888. https://doi.org/10.1016/j.neuroimage.2022.118888

Helakari H, Korhonen V, Holst SC, Piispala J, Kallio M, Väyrynen T, et al. Human NREM Sleep Promotes Brain-Wide Vasomotor and Respiratory Pulsations. J Neurosci. 2022; 42(12):2503–2515. https://doi.org/10.1523/JNEUROSCI.0934-21.2022

Leanza G, Gulino R, Zorec R. Noradrenergic Hypothesis Linking Neurodegeneration-Based Cognitive Decline and Astroglia. Front Mol Neurosci. 2018; 11(254). https://doi.org/10.3389/fnmol.2018.00254

Blackman J, Love S, Sinclair L, Cain R, Coulthard E. APOE ε4, Alzheimer’s disease neuropathology and sleep disturbance, in individuals with and without dementia. Alzheimer’s Res Ther. 2022; 14(1):47. https://doi.org/10.1186/s13195-022-00992-y

Xiao SY, Liu YJ, Lu W, Sha ZW, Xu C, Yu ZH, et al. Possible Neuropathology of Sleep Disturbance Linking to Alzheimer’s Disease: Astrocytic and Microglial Roles. Front Cell Neurosci. 2022; 16:875138. https://doi.org/10.3389/fncel.2022.875138

Corsi G, Picard K, Castro MA, Garofalo S, Tucci F, Chece G, et al. Microglia modulate hippocampal synaptic transmission and sleep duration along the light/dark cycle. Glia. 2022; 70(1):89–105. https://doi.org/10.1002/glia.24090

Gentry NW, McMahon T, Yamazaki M, Webb J, Arnold TD, Rosi S, et al. Microglia are involved in the protection of memories formed during sleep deprivation. Neurobiol Sleep Circadian Rhythms. 2022; 12:100073. https://doi.org/10.1016/j.nbscr.2021.100073

Xin J, Wang C, Cheng X, Xie C, Zhang Q, Ke Y, et al. CX3C-chemokine receptor 1 modulates cognitive dysfunction induced by sleep deprivation. Chin Med J. 2022; 135(2):205–215. https://doi.org/10.1097/CM9.0000000000001769

Barahona RA, Morabito S, Swarup V, Green KN. Cortical diurnal rhythms remain intact with microglial depletion. Sci Rep. 2022; 12(1):114. https://doi.org/10.1038/s41598-021-04079-w

Wan T, Zhu W, Zhao Y, Zhang X, Ye R, Zuo M, et al. Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice. Nat Commun. 2022; 13(1):1134. https://doi.org/10.1038/s41467-022-28777-9

Bojarskaite L, Bjørnstad DM, Pettersen KH, Cunen C, Hermansen GH, Åbjørsbråten KS, et al. Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep. Nat Commun. 2020; 11(1):3240. https://doi.org/10.1038/s41467-020-17062-2

Ingiosi AM, Hayworth CR, Harvey DO, Singletary KG, Rempe MJ, Wisor JP, et al. A Role for Astroglial Calcium in Mammalian Sleep and Sleep Regulation. Curr Biol. 2020; 30(22):4373-4383.e7. https://doi.org/10.1016/j.cub.2020.08.052

Chaturvedi R, Stork T, Yuan C, Freeman MR, Emery P. Astrocytic GABA transporter controls sleep by modulating GABAergic signaling in Drosophila circadian neurons. Curr Biol. 2022; 32(9):1895-1908.e5. https://doi.org/10.1016/j.cub.2022.02.066

Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR, Mahan TE, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Sci. 2019; 363(6429):880–884. https://doi.org/10.1126/science.aav2546

Si X, Guo T, Wang Z, Fang Y, Gu L, Cao L, et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson’s disease. NPJ Parkinsons Dis. 2022; 8(1):54. https://doi.org/10.1038/s41531-022-00316-9

Citado por