Variabilidad de la precipitacion afecta la composición química, producción de gas y degradabilidad de los cactus

Rainfall variability affects the chemical composition, gas production and degradability of cacti Variabilidade da precipitação e a composição nutricional de cactos

Contenido principal del artículo

Daniel Ribeiro Menezes
Universidade Federal do Vale do São Francisco, Brazil.
Juliana Muniz dos Santos
Universidade Federal do Vale do São Francisco, Brazil.
Cintia Raquel Nunes de Oliveira
Universidade Federal da Bahia, Brazil.
Polyana Deyse Rodrigues Marcelino
Universidade Federal da Bahia, Brazil.
Anna Paula da Mata Araújo Pinheiro
Universidade Federal do Vale do São Francisco, Brazil.
Dalinne Tamara Queiroz de Carvalho
Universidade Federal da Bahia, Brazil.
Júlio Cesar Silva Nascimento
Universidade Federal do Vale do São Francisco, Brazil.
Tadeu Vinhas Voltolini
Empresa Brasileira de Pesquisa Agropecuária, Embrapa Semiárido,  Brazil.
Mário Adriano Ávila Queiroz
Universidade Federal do Vale do São Francisco, Brazil.

Resumen

Objetivo. El objetivo fue evaluar el efecto de la variabilidad de las lluvias sobre la composición química, la degradabilidad in vitro y la producción de gas de cactus en la región Semiárida. Materiales y métodos. Este fue un diseño experimental completamente al azar en un arreglo factorial de 2 períodos de lluvia (lluvia alta y baja) x 5 especies de cactus, con 5 repeticiones. Los cactus evaluados fueron Pilosocereus gounellei (Weber ex K. Schum). Bly ex Rowl, Cereus jamacaru DC., Opuntia ficus indica Mill, Nopalea cochenillifera Salm. Dyck y Opuntia stricta (Haw.) Haw, todas frescas. Resultados. Hubo una interacción entre la variación de la lluvia y las especies de cactus para materia seca, proteína cruda, fibra detergente neutra y fibra detergente ácido (p<0.05), producción de gas in vitro (p<0.05) y para la degradabilidad in vitro de materia seca (p<0.05). Entre los cactus, Pilosocereus gounellei presentó una menor proporción de materia orgánica y un aumento en el contenido de materia mineral en relación a los demás cactus (p<0.05). Conclusiones. La composición química, los coeficientes de producción de gas y la degradabilidad in vitro fueron influenciados por las especies de cactus y por la variación de las precipitaciones. Las especies de cactus aumentan el contenido de materia seca, proteína cruda y fibra de detergente neutro durante la escasez de precipitaciones. Las variedades de nopal (Opuntia y Nopalea) se destacaron entre los cactus ensayados en relación a la producción de gas y la degradabilidad in vitro.


 

Descargas

Los datos de descargas todavía no están disponibles.

Datos de publicación

Metric
Este artículo
Otros artículos
Revisores/as por pares 
0
2.4

Perfil evaluadores/as  N/D

Declaraciones de autoría

Declaraciones de autoría
Este artículo
Otros artículos
Disponibilidad de datos 
N/D
16%
Financiación externa 
No
32%
Conflictos de intereses 
N/D
11%
Metric
Esta revista
Otras revistas
Artículos aceptados 
0%
33%
Días para la publicación 
58
145

Indexado en

Editor y equipo editorial
Perfiles
Sociedad académica 
Universidad de Sucre
Editorial 
Universidad de Sucre

Detalles del artículo

Biografía del autor/a / Ver

Daniel Ribeiro Menezes, Universidade Federal do Vale do São Francisco, Brazil.

Daniel Ribeiro Menezes

Universidade Federal do Vale do São Francisco, Campus de Ciências Agrárias, Petrolina/PE, Brazil.

daniel.menezes@univasf.edu.br

https://orcid.org/000-0002-6378-010X

Juliana Muniz dos Santos, Universidade Federal do Vale do São Francisco, Brazil.

Juliana Muniz dos Santos

Universidade Federal do Vale do São Francisco, Campus de Ciências Agrárias, Petrolina/PE, Brazil.

julianamds16@hotmail.com

https://orcid.org/0000-0002-1565-1151

Cintia Raquel Nunes de Oliveira, Universidade Federal da Bahia, Brazil.

Cintia Raquel Nunes de Oliveira

Universidade Federal da Bahia, Escola de Medicina Veterinária e Zootecnia, Salvador/BA, Brazil.

cintia.agap@hotmail.com

https://orcid.org/0000-0002-4495-9294

Polyana Deyse Rodrigues Marcelino, Universidade Federal da Bahia, Brazil.

Polyana Deyse Rodrigues Marcelino

Universidade Federal da Bahia, Escola de Medicina Veterinária e Zootecnia, Salvador/BA, Brazil.

polyana_deyse@hotmail.com

https://orcid.org/0000-0002-8094-6765

Anna Paula da Mata Araújo Pinheiro, Universidade Federal do Vale do São Francisco, Brazil.

Anna Paula da Mata Araújo Pinheiro

Universidade Federal do Vale do São Francisco, Campus de Ciências Agrárias, Petrolina/PE, Brazil.

annapaula_pinheiro@hotmail.com

https://orcid.org/0000-0001-6414-6250

Dalinne Tamara Queiroz de Carvalho, Universidade Federal da Bahia, Brazil.

Dalinne Tamara Queiroz de Carvalho

Universidade Federal da Bahia, Escola de Medicina Veterinária e Zootecnia, Salvador/BA, Brazil.

dalinnetamara@hotmail.com

http://orcid.org/0000-0002-0148-1577

Júlio Cesar Silva Nascimento, Universidade Federal do Vale do São Francisco, Brazil.

Júlio Cesar Silva Nascimento

Universidade Federal do Vale do São Francisco, Campus de Ciências Agrárias, Petrolina/PE, Brazil.

j_18_cesar@hotmail.com

http://orcid.org/0000-0002-3208-2835

Glayciane Gois, UNIVASF

Glayciane Costa Gois

Universidade Federal do Vale do São Francisco, Campus de Ciências Agrárias, Petrolina/PE, Brazil.

glayciane_gois@yahoo.com.br  

http://orcid.org/0000-0002-4624-1825

Tadeu Vinhas Voltolini, Empresa Brasileira de Pesquisa Agropecuária, Embrapa Semiárido,  Brazil.

Tadeu Vinhas Voltolini

Empresa Brasileira de Pesquisa Agropecuária, Embrapa Semiárido, Petrolina/PE, Brazil.

tadeu.voltilini@embrapa.br

http://orcid.org/0000-0001-8793-8103

Mário Adriano Ávila Queiroz, Universidade Federal do Vale do São Francisco, Brazil.

Mario Adriano Ávila Queiroz

Universidade Federal do Vale do São Francisco, Campus de Ciências Agrárias, Petrolina/PE, Brazil.

mario.queiroz@univasf.edu.br

http://orcid.org/0000-0001-7677-5273

Referencias / Ver

Salimon C, Anderson L. How strong is the relationship between rainfall variability and Caatinga productivity? A case study under a changing climate. An Acad Bras Ci. 2019; 90:2121–2127. http://dx.doi.org/10.1590/0001-3765201720170143. DOI: https://doi.org/10.1590/0001-3765201720170143

Magalhães ALR, Teodoro AL, Gois GC, Campos FS, Souza JSR, Andrade AP, et al. Chemical and mineral composition, kinetics of degradation and in vitro gas production of native cactus. J Agric Stud. 2019; 7:119–137. https://doi.org/10.5296/jas.v7i4. DOI: https://doi.org/10.5296/jas.v7i4.15315

Edvan RL, Mota RRM, Dias-Silva TP, Nascimento RR, Sousa SV, Silva AL, et al. Resilience of cactus pear genotypes in a tropical semi-arid region subject to climatic cultivation restriction. Scient Rep. 2020; 10:1–10. https://doi.org/10.1038/s41598-020-66972-0. DOI: https://doi.org/10.1038/s41598-020-66972-0

Carvalho CBM, Edvan RL, Carvalho MLAM, Reis ALA, Nascimento RR. Uso de cactáceas na alimentação animal e seu armazenamento após colheita. Arch Zootec. 2018; 67:440-446. https://doi.org/10.21071/az.v67i259.3803. DOI: https://doi.org/10.21071/az.v67i259.3803

Barbosa HA, Kumar TVL, Paredes F, Elliott S, Ayuga JG. Assessment of Caatinga response to drought using Meteosat-SEVIRI normalized difference vegetation index (2008–2016). ISPRS J Phot Rem Sen. 2019; 148:235-252. https://doi.org/10.1016/j.isprsjprs.2018.12.014. DOI: https://doi.org/10.1016/j.isprsjprs.2018.12.014

Santos HG, Jacomine PKT, Anjos LHC, et al. Sistema brasileiro de classificação de solos. 5th ed. Brasília, DF: Embrapa; 2018.

Aoac. Association of Official Analytical Chemists. Official methods of analysis. 20th ed. Washington, DC: Latimer Jr., G.W; 2016.

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991; 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Menezes DR, Costa RG, Araújo GGL, Pereira LGR, Nunes ACB, Henrique LT, et al. Cinética ruminal de dietas contendo farelo de mamona destoxificado. Arq Bras Med Vet Zootec. 2015; 67:636-641. https://doi.org/10.1590/1678-7040. DOI: https://doi.org/10.1590/1678-7040

Schofield P, Pitt RE, Pell AN. Kinetics of fiber digestion from in vitro gas production. J Anim Sci. 1994; 72:2980–2991. http://dx.doi.org/10.2527/1994.72112980x. DOI: https://doi.org/10.2527/1994.72112980x

Tilley JMA, Terry RA. A two-stage technique for the in vitro digestion of forage crops. J Brit Grass Soc. 1963; 18:104–111. http://dx.doi.org/10.1111/j.1365-2494.1963.tb00335.x. DOI: https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

Ørskov ER, Mcdonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci. 1979; 92:499-503. https://doi.org/10.1017/S0021859600063048. DOI: https://doi.org/10.1017/S0021859600063048

Alves FAL, Andrade AP, Bruno RLA, Silva MGV, Souza MFV, Santos DC. Seasonal variability of phenolic compounds and antioxidant activity in prickly pear cladodes of Opuntia and Nopalea genes. Food Sci Techn. 2017; 37:536-543. http://dx.doi.org/10.1590/1678-457X.19316. DOI: https://doi.org/10.1590/1678-457x.19316

Davis SC, Simpson J, Gil-Veja KC, Niechayev NA, van Tongerlo E, Castano NH, et al. Undervalued potential of crassulacean acid metabolism for current and future agricultural production. J Exp Bot. 2019; 70:6521–6537. https://doi.org/10.1093/jxb/erz223. DOI: https://doi.org/10.1093/jxb/erz223

Matias AGS, Araújo GGL, Campos FS, Moraes SA, Gois, GC, Silva TS, et al. Fermentation profile and nutritional quality of silages composed of cactus pear and maniçoba for goat feeding. J Agric Sci. 2020; 158:304-312. https://doi.org/10.1017/S0021859620000581. DOI: https://doi.org/10.1017/S0021859620000581

Gouws CA, Georgousopoulou EN, Mellor DD, McKune A, Naumovski N. Effects of the consumption of prickly pear cacti (Opuntia spp.) and its products on blood glucose levels and insulin: A systematic review. Med. 2019; 55:1-18. https://dx.doi.org/10.3390/medicina55050138. DOI: https://doi.org/10.3390/medicina55050138

Pereira DS, Lana RP, Carmo DL, Costa YKS. Chemical composition and fermentative losses of mixed sugarcane and pigeon pea silage. Acta Scient. Anim Sci. 2019; 41:e43709. https://dx.doi.org/10.4025/actascianimsci.v41i1.43709. DOI: https://doi.org/10.4025/actascianimsci.v41i1.43709

Hristov AN, Bannink A, Crompton LA, Huhtanen P, Kreuzer M, McGee M, et al. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. J Dairy Sci. 2019; 102:5811–5852. https://doi.org/10.3168/jds.2018-15829. DOI: https://doi.org/10.3168/jds.2018-15829

Albuquerque AS, Freire FJ, Barbosa MD, Marangon LC, Feliciano ALP. Efficiency of biological utilization of micronutrients by forests species in hypoxerophytic Caatinga. Flor Amb. 2018; 25:e20170925. https://doi.org/10.1590/2179-8087.092517. DOI: https://doi.org/10.1590/2179-8087.092517

Carvalho CBM, Edvan RL, Nascimento KS, Nascimento RR, Bezerra LR, Jácome DLS, et al. Methods of storing cactus pear genotypes for animal feeding Afr J Range For Sci. 2020; 37:173-179. https://doi.org/10.2989/10220119.2020.1734084. DOI: https://doi.org/10.2989/10220119.2020.1734084

Furtado RN, Carneiro MSS, Pereira ES, Moreira Filho EC, Magalhães JA, Oliveira SMP. Intake, milk yield, and physiological parameters of lactating cows fed on diets containing different quantities of xique xique (Pilosocereus gounellei). Semina: Ci Agr. 2016; 37:483-494. https://doi.org/10.5433/1679-0359.2016v37n1p483. DOI: https://doi.org/10.5433/1679-0359.2016v37n1p483

Cordova-Torres AV, Mendoza-Mendoza JC, Bernal-Santos G, Gasca TG, Kawas J, Costa RG, et al. Nutritional composition, in vitro degradability and gas production of Opuntia ficus indica and four other wild cacti species. Life Sci J. 2015; 12:42–54. https://doi.org/10.7537/marslsj1202s15.07.

Vazquez-Mendoza P, Miranda-Romero LA, Aranda-Osorio G, Burgueno-Ferreira JA, Salem AZM. Evaluation of eleven Mexican cultivars of prickly pear cactus trees for possibly utilization as animal fed: In vitro gas production. Agrof Syst. 2017; 91:749–756. http://dx.doi.org/10.1007/s10457-016-9947-6. DOI: https://doi.org/10.1007/s10457-016-9947-6

Ribeiro IA, Voltolini TV, Simões WL, Ferreira MAJF, Menezes DR, Gois GC. Morphological responses, fruit yield, nutritive value and in vitro gas production of forage watermelon genotypes on semi-arid condition. Biol Rhyt Res. 2019; 50:1–9. http://dx.doi.org/10.1080/09291016.2019.1629218. DOI: https://doi.org/10.1080/09291016.2019.1629218

Pinto CS, Magalhães ALR, Teodoro AL, Gois GC, Véras RML, Campos FS, et al. Potential alternative feed sources for ruminant feeding from the biodiesel production chain by-products. South Afr J Anim Sci. 2020; 50:69–77. http://dx.doi.org/10.4314/sajas.v50i1.8. DOI: https://doi.org/10.4314/sajas.v50i1.8

Silva JGM, Silva DS, Pereira WE, Diniz MCNM, Silva GJAM, Medeiros MR. Características morfológicas e produção do xique-xique cultivado em diferentes densidades. Rev Cent. 2011; 2:08–17.

Pinho RMA, Santos EM, Oliveira JS, Carvalho GGP, Silva TC, Macêdo AJS, et al. Does the level of forage neutral detergent fiber affect the ruminal fermentation, digestibility and feeding behavior of goats fed cactus pear? Anim Sci J. 2018; 89:1424-1431. http://dx.doi.org/10.1111/asj.13043. DOI: https://doi.org/10.1111/asj.13043

Yansari AT. Ruminal kinetics of nutrients degradation, hydration, and functional specific gravity of three types of beet pulp. Iranian J Appl Anim Sci. 2017; 7:17-26. http://ijas.iaurasht.ac.ir/article_528790.html

Alves FAL, Andrade AP, Bruno RLA, Santos DC. Study of the variability, correlation and importance of chemical and nutritional characteristics in cactus pear (Opuntia and Nopalea). Afr J Agric Res. 2016; 11:2882-2892. https://doi.org/10.5897/AJAR2016.11025 DOI: https://doi.org/10.5897/AJAR2016.11025

Doorenbos J, Martín-Tereso J, Dijkstra J, Van Laar H. Effect of different levels of rapidly degradable carbohydrates calculated by a simple rumen model on performance of lactating dairy cows. J Dairy Sci. 2017; 100:5422-5433. https://doi.org/10.3168/jds.2016-12278 DOI: https://doi.org/10.3168/jds.2016-12278

Citado por