Efecto de la dieta sobre los parámetros ruminales y la microbiota ruminal: revisión
Effect of the diet on ruminal parameters and rumen microbiota: review Efecto de la dieta sobre la fermentación ruminal
Contenido principal del artículo
Resumen
Los rumiantes son animales de pastoreo con la capacidad de utilizar fuentes de forraje para mantenimiento, crecimiento, reproducción y producción. Poseen el rumen, una cámara de fermentación compuesta por alta diversidad de microorganismos con capacidad para degradar alimentos ricos en fibra o almidón y otro tipo de carbohidratos no fibrosos, ya que contienen enzimas que actúan rompiendo enlaces entre moléculas, haciendo presente el sustrato. en la comida disponible. Este estudio se desarrolló con el objetivo de revisar la literatura sobre cómo las diferentes dietas afectan los parámetros ruminales, así como la ecología del rumen. Por lo tanto, la búsqueda de la comprensión de cómo las diferentes dietas pueden afectar las características ruminales se considera importante, ya que permite manipular la dieta hasta un umbral, sin causar ninguna alteración metabólica a los animales y luego maximizar el rendimiento. Esta práctica puede contribuir a minimizar las pérdidas, maximizar el proceso de fermentación de los alimentos y la absorción de los productos de fermentación, que pueden convertirse en carne y leche. Los resultados de este estudio muestran que la población microbiana y los productos finales de la fermentación ruminal se ven directamente afectados por la dieta animal. La manipulación de las dietas puede permitir maximizar la eficiencia productiva, así como la optimización del uso de nutrientes, maximizar la producción animal.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
Belanche A, Doreau M, Edwards JE, Moorby JM, Pinloche E, Newbold CJ. Shifts in the Rumen Microbiota Due to the Type of Carbohydrate and Level of Protein Ingested by Dairy Cattle Are Associated with Changes in Rumen Fermentation. J Nutr. 2012 Sep 1;142(9):1684–92. https://doi.org/10.3945/jn.112.159574
Bento CBP, Azevedo AC, Gomes DI, Batista ED, Rufino LMA, Detmann E, et al. Effect of protein supplementation on ruminal parameters and microbial community fingerprint of Nellore steers fed tropical forages. Animal. 2016;10(1):44–54. https://doi.org/10.1017/S1751731115001512
Chen Y, Penner GB, Li M, Oba M, Guan LL. Changes in Bacterial Diversity Associated with Epithelial Tissue in the Beef Cow Rumen during the Transition to a High-Grain Diet. Appl Environ Microbiol. 2011 Aug 15;77(16):5770–81. https://doi.org/10.1128/AEM.00375-11
Köche JC. Fundamentos de metodologia científica [Internet]. 1st ed. Matos APS, Silva JM da, Peretti L, Oleniki ML, editors. Petrópolis: Editora Vozes; 2011. 185 p. Available from: http://www.adm.ufrpe.br/sites/ww4.deinfo.ufrpe.br/files/Fundamentos_de_Metodologia_Científica.pdf
Pereira AS, Shitsuka DM, Parreira FJ, Shitsuka R. Metodologia da Pesquisa Científica [Internet]. 1st ed. Educacional N de T, editor. Santa Maria: Universidade Federal de Santa Maria; 2018. 119 p. Available from: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Khiaosa-ard R, Zebeli Q. Cattle’s variation in rumen ecology and metabolism and its contributions to feed efficiency. Livest Sci. 2014 Apr;162:66–75. https://doi.org/10.1016/j.livsci.2014.01.005
Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015 Nov 26;5(1):14567. https://doi.org/10.1038/srep14567
Hernandez-Sanabria E, Goonewardene LA, Wang Z, Durunna ON, Moore SS, Guan LL. Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle. Appl Environ Microbiol. 2012;78(4):1203–14. https://doi.org/10.1128/AEM.05114-11
Ding G, Chang Y, Zhao L, Zhou Z, Ren L, Meng Q. Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios. J Anim Sci Biotechnol. 2014 Dec 1;5(1):24. https://doi.org/10.1186/2049-1891-5-24
Hernandez-Sanabria E, Goonewardene LA, Wang Z, Durunna ON, Moore SS, Guan LL. Impact of Feed Efficiency and Diet on Adaptive Variations in the Bacterial Community in the Rumen Fluid of Cattle. Appl Environ Microbiol. 2012 Feb 15;78(4):1203–14. https://doi.org/10.1128/AEM.05114-11
Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, et al. Simultaneous Amplicon Sequencing to Explore Co-Occurrence Patterns of Bacterial, Archaeal and Eukaryotic Microorganisms in Rumen Microbial Communities. PLoS One. 2013;8(2):e47879. https://doi.org/10.1371/journal.pone.0047879
Kim M, Yu Z. Quantitative comparisons of select cultured and uncultured microbial populations in the rumen of cattle fed different diets. J Anim Sci Biotechnol. 2012;3(1):2–7. https://doi.org/10.1186/2049-1891-3-28
Huws SA, Lee MRF, Muetzel SM, Scott MB, Wallace RJ, Scollan ND. Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiol Ecol. 2010 Apr 20;no-no. https://doi.org/10.1111/j.1574-6941.2010.00892.x
Lillis L, Boots B, Kenny DA, Petrie K, Boland TM, Clipson N, et al. The effect of dietary concentrate and soya oil inclusion on microbial diversity in the rumen of cattle. J Appl Microbiol. 2011 Dec;111(6):1426–35. https://doi.org/10.1111/j.1365-2672.2011.05154.x
Krause DO, Nagaraja TG, Wright ADG, Callaway TR. Board-invited review: Rumen microbiology: Leading the way in microbial ecology1,2. J Anim Sci. 2013 Jan 1;91(1):331–41. https://doi.org/10.2527/jas.2012-5567
Mateos I, Ranilla MJ, Saro C, Carro MD. Shifts in microbial populations in Rusitec fermenters as affected by the type of diet and impact of the method for estimating microbial growth (15N v. microbial DNA). Animal. 2017;11(11):1939–48. https://doi.org/10.1017/S1751731117000878
Chen Y, Oba M, Guan LL. Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Vet Microbiol. 2012 Oct;159(3–4):451–9. https://doi.org/10.1016/j.vetmic.2012.04.032
Deng W, Xi D, Mao H, Wanapat M. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol Biol Rep. 2008 Jun 5;35(2):265–74. https://doi.org/10.1007/s11033-007-9079-1
Aikman PC, Henning PH, Humphries DJ, Horn CH. Rumen pH and fermentation characteristics in dairy cows supplemented with Megasphaera elsdenii NCIMB 41125 in early lactation. J Dairy Sci. 2011 Jun;94(6):2840–9. https://doi.org/10.3168/jds.2010-3783
Arelovich HM, Amela MI, Martínez MF, Bravo RD, Torrea MB. Influence of different sources of zinc and protein supplementation on digestion and rumen fermentation parameters in sheep consuming low-quality hay. Small Rumin Res. 2014 Oct;121(2–3):175–82. https://doi.org/10.1016/j.smallrumres.2014.08.005
Ruiz‐Albarrán M, Balocchi OA, Noro M, Wittwer F, Pulido RG. Effect of the type of silage on milk yield, intake and rumen metabolism of dairy cows grazing swards with low herbage mass. Anim Sci J. 2016 Jul 30;87(7):878–84. https://doi.org/10.1111/asj.12513
Zhu W, Wei Z, Xu N, Yang F, Yoon I, Chung Y, et al. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. J Anim Sci Biotechnol. 2017 Dec 28;8(1):36. https://doi.org/10.1186/s40104-017-0167-3
Sun P, Wang JQ, Deng LF. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Animal. 2013;7(2):216–22. https://doi.org/10.1017/S1751731112001188
Benchaar C, Romero-Pérez GA, Chouinard PY, Hassanat F, Eugene M, Petit H V., et al. Supplementation of increasing amounts of linseed oil to dairy cows fed total mixed rations: Effects on digestion, ruminal fermentation characteristics, protozoal populations, and milk fatty acid composition. J Dairy Sci. 2012;95(8):4578–90. https://doi.org/10.3168/jds.2012-5455
Xie X, Wang J, Guan L, Liu J. Effect of changing forage on the dynamic variation in rumen fermentation in sheep. Anim Sci J. 2018 Jan 25;89(1):122–31. https://doi.org/10.1111/asj.12915
Kobayashi Y, Oh S, Myint H, Koike S. Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation. J Anim Sci Biotechnol. 2016 Dec 15;7(1):70. https://doi.org/10.1186/s40104-016-0126-4
Ueda K, Mitani T, Kondo S. Effect of increased concentrate allotment before evening grazing on herbage intake, nitrogen utilization and rumen fermentation in dairy cows grazed on perennial ryegrass pasture. Anim Sci J. 2016 Oct;87(10):1233–43. https://doi.org/10.1111/asj.12576
Foiklang S, Wanapat M, Norrapoke T. In vitro rumen fermentation and digestibility of buffaloes as influenced by grape pomace powder and urea treated rice straw supplementation. Anim Sci J. 2016 Mar;87(3):370–7. https://doi.org/10.1111/asj.12428
Benchaar C, McAllister TA, Petit H V., Chouinard PY. Whole flax seed and flax oil supplementation of dairy cows fed high-forage or high-concentrate diets: Effects on digestion, ruminal fermentation characteristics, protozoal populations and milk fatty acid profile. Anim Feed Sci Technol. 2014;198:117–29. https://doi.org/10.1016/j.anifeedsci.2014.10.003
Commun L, Mialon MM, Martin C, Baumont R, Veissier I. Risk of subacute ruminal acidosis in sheep with separate access to forage and concentrate. J Anim Sci. 2009 Oct 1;87(10):3372–9. https://doi.org/10.2527/jas.2009-1968
Biswas AA, Lee S, Mamuad LL, Kim S, Choi Y, Lee C, et al. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets. Anim Sci J. 2018 Jan 27;89(1):114–21. https://doi.org/10.1111/asj.12913
Dijkstra J, Ellis JL, Kebreab E, Strathe AB, López S, France J, et al. Ruminal pH regulation and nutritional consequences of low pH. Anim Feed Sci Technol. 2012 Feb;172(1–2):22–33. https://doi.org/10.1016/j.anifeedsci.2011.12.005